[1]
D. McLean, Grain Boundaries in Metals, Clarendon Press, Oxford, (1957).
Google Scholar
[2]
M.K. Miller, R. Jayaram, K.F. Russell, Characterization of Phosphorus Segregation in Neutron-Irradiated Russian Pressure Vessel Steel Weld, J. Nucl. Mater. 225 (1995) 215–224.
DOI: 10.1016/0022-3115(94)00667-9
Google Scholar
[3]
L.M. Utevskii, E.E. Glickman, G.S. Clark, Reversible brittleness of steels and Fe –based alloys, Metallurgy, Moscow, 1978(in Russian).
Google Scholar
[4]
B.S. Bokshtein, A.N. Khodan, O.O. Zabusov, D.A. Maltsev, B.A. Gurovich, Kinetics of phosphorus segregation at grain boundaries of low-alloy low-carbon steel, Phys. Met. and Metallurgy, 115 (2) (2014) 146-156.
DOI: 10.1134/s0031918x14020033
Google Scholar
[5]
R.J. МсЕlroу, C.А. English, А.J.Е. Foreman, G. Gage, J.М. Hyde, P.H.N. Ray, I.A. Vatter, Irradiation Induced Phosphorus Segregation and Implications for Post-Irradiation Annealing of Reactor Pressure Vessels, Proc. of 18th Int. Symp. ASTM SТP (1999).
DOI: 10.1520/stp13871s
Google Scholar
[6]
Z. Lu, R.G. Faulkner, R.B. Jones, P.E.J. Flewitt, Radiation and thermally induced phosphorus intergranular segregation in pressure vessel steels, Journal of ASTM International 2 (2005) 180-194.
DOI: 10.1520/jai12387
Google Scholar
[7]
E.A. Kuleshova, B.A. Gurovich, Z.V. Lavrukhina, M.A. Saltykov, S.V. Fedotova, A.N. Khodan, Assessment of segregation kinetics in water-moderated reactors pressure vessel steels under long-term operation, Journal of Nuclear Materials 477 (2016).
DOI: 10.1016/j.jnucmat.2016.04.060
Google Scholar
[8]
Ya. I. Shtrombakh, B. A. Gurovich, E. A. Kuleshova, D. A. Maltsev, S. V. Fedotova, A. A. Chernobaeva, Thermal ageing mechanisms of VVER-1000 reactor pressure vessel steels J. Nucl. Mater., 452 (2014) 348-358.
DOI: 10.1016/j.jnucmat.2014.05.059
Google Scholar
[9]
B. Gurovich, E. Kuleshova , Ya. Shtrombakh, S. Fedotova, D. Maltsev, A. Frolov, O. Zabusov, D. Erak, D. Zhurko, Evolution of structure and properties of VVER-1000 RPV steels under accelerated irradiation up to beyond design fluencies, J. Nucl. Mater., 456 (2015).
DOI: 10.1016/j.jnucmat.2014.09.019
Google Scholar
[10]
B.A. Gurovich, E.A. Kuleshova, D.A. Mal'cev, S.V. Fedotova, A.S. Frolov, The relationship of service characteristics of RPV steels with the nanostructure evolution under the influence of temperature and radiation, Questions of Nuclear Science and Technologies, 84(2013).
Google Scholar
[11]
A.V. Khvan, B. Haltstedt, C. Broeckmann, A thermodynamic evaluation of the Fe-Cr-C systemCALPHAD, 46 (2014) 24-33.
Google Scholar
[12]
G. Kaptay, Partial Surface Tension o Components of a solution, Langmuir 31 (2015) 5796-5804.
DOI: 10.1021/acs.langmuir.5b00217
Google Scholar
[13]
G. Kaptay, On the interfacial energy of coherent interfaces, Acta Mat. 60 (2012) 6804-6813.
DOI: 10.1016/j.actamat.2012.09.002
Google Scholar
[14]
E.E. Glikman, Yu.V. Grdina, Yu.V. Piguzov, Study of fundamentals of reversible brittleness of steels by internal friction method, Metallic material Science and Heat treatment, 4 (1967) 2-12 (in Russian).
DOI: 10.1007/bf00652952
Google Scholar
[15]
M.V. Sorokin, Z.V. Lavrukhina, A.N. Khodan, D.A. Maltsev, B.S. Bokstein, A.O. Rodin, A.I. Ryazanov, B.A. Gurovich, Effect of subgrain structure on the kinetics of phosphorus segregation in grain boundaries, Mat. Letters 158 (2015) 151-154.
DOI: 10.1016/j.matlet.2015.05.145
Google Scholar
[16]
M. Hazewinkel (Ed. ), Encyclopaedia of Mathematics: Volume 3 Heaps and Semi-heaps Moments, Method of (In Probability Theory), Kluwer Academic Publishers, Dodrecht, (1995).
Google Scholar
[17]
M.A. Saltykov, O.O. Zabusov, B.A. Gurovich, M.A. Artamonov, A.P. Dementiev, E.A. Kuleshov, S.V. Fedotova, D.A. Zhurko, Features of the microstructure of the surface of the destruction of the materials of the VVER-1000 reactor pressure vessel, Proc. of XX International Conference on the Physics of Radiation Phenomena and Radiation Material Science, 2012, 9.
DOI: 10.1016/j.jnucmat.2012.12.020
Google Scholar
[18]
H. Ohtani, N. Hanaya, M. Hasebe, S. Teraoka, M. Abe, Thermodynamic analysis of the Fe-Ti-P ternary system by incorporating first-principles calculations into the CALPHAD approachCalphad, 30, 147-58(2006).
DOI: 10.1016/j.calphad.2005.09.006
Google Scholar
[19]
J. Miettinen, G. Vassilev, Thermodynamic Description of Ternary Fe-X-P Systems. Part 1: Fe-Cr-P, J. Phase Equilib. Diffus., 35 (2014) 458–468.
DOI: 10.1007/s11669-014-0314-x
Google Scholar