Kinetics of Phosphorus Segregation in the Grain Boundaries of VVER-1000 Pressure Vessel Steels

Article Preview

Abstract:

Methods of AES quantitative analysis were developed and applied for the determination of element concentrations at the surfaces of brittle fractures along grain boundaries. An attempt was made to take into account the presence of carbide precipitates and cleavage areas in the zone of the Auger analysis of their impact on the results of quantitative measurements. Obtained data were used for evaluation of the phosphorous segregation kinetics. The obtained results are consistent with thermodynamic modeling with CALPHAD method.Kinetics of segregation is analyzed with three models: (1) Langmuir - McLean theory; (2) model akin to kinetics of first order chemical reactions in solids; and (3) the model, which takes into account contribution of fast transport within subgrain networks and slow diffusion through the grain bulk. The two later models are in a good agreement with the experimental results.

You might also be interested in these eBooks

Info:

* - Corresponding Author

[1] D. McLean, Grain Boundaries in Metals, Clarendon Press, Oxford, (1957).

Google Scholar

[2] M.K. Miller, R. Jayaram, K.F. Russell, Characterization of Phosphorus Segregation in Neutron-Irradiated Russian Pressure Vessel Steel Weld, J. Nucl. Mater. 225 (1995) 215–224.

DOI: 10.1016/0022-3115(94)00667-9

Google Scholar

[3] L.M. Utevskii, E.E. Glickman, G.S. Clark, Reversible brittleness of steels and Fe –based alloys, Metallurgy, Moscow, 1978(in Russian).

Google Scholar

[4] B.S. Bokshtein, A.N. Khodan, O.O. Zabusov, D.A. Maltsev, B.A. Gurovich, Kinetics of phosphorus segregation at grain boundaries of low-alloy low-carbon steel, Phys. Met. and Metallurgy, 115 (2) (2014) 146-156.

DOI: 10.1134/s0031918x14020033

Google Scholar

[5] R.J. МсЕlroу, C.А. English, А.J.Е. Foreman, G. Gage, J.М. Hyde, P.H.N. Ray, I.A. Vatter, Irradiation Induced Phosphorus Segregation and Implications for Post-Irradiation Annealing of Reactor Pressure Vessels, Proc. of 18th Int. Symp. ASTM SТP (1999).

DOI: 10.1520/stp13871s

Google Scholar

[6] Z. Lu, R.G. Faulkner, R.B. Jones, P.E.J. Flewitt, Radiation and thermally induced phosphorus intergranular segregation in pressure vessel steels, Journal of ASTM International 2 (2005) 180-194.

DOI: 10.1520/jai12387

Google Scholar

[7] E.A. Kuleshova, B.A. Gurovich, Z.V. Lavrukhina, M.A. Saltykov, S.V. Fedotova, A.N. Khodan, Assessment of segregation kinetics in water-moderated reactors pressure vessel steels under long-term operation, Journal of Nuclear Materials 477 (2016).

DOI: 10.1016/j.jnucmat.2016.04.060

Google Scholar

[8] Ya. I. Shtrombakh, B. A. Gurovich, E. A. Kuleshova, D. A. Maltsev, S. V. Fedotova, A. A. Chernobaeva, Thermal ageing mechanisms of VVER-1000 reactor pressure vessel steels J. Nucl. Mater., 452 (2014) 348-358.

DOI: 10.1016/j.jnucmat.2014.05.059

Google Scholar

[9] B. Gurovich, E. Kuleshova , Ya. Shtrombakh, S. Fedotova, D. Maltsev, A. Frolov, O. Zabusov, D. Erak, D. Zhurko, Evolution of structure and properties of VVER-1000 RPV steels under accelerated irradiation up to beyond design fluencies, J. Nucl. Mater., 456 (2015).

DOI: 10.1016/j.jnucmat.2014.09.019

Google Scholar

[10] B.A. Gurovich, E.A. Kuleshova, D.A. Mal'cev, S.V. Fedotova, A.S. Frolov, The relationship of service characteristics of RPV steels with the nanostructure evolution under the influence of temperature and radiation, Questions of Nuclear Science and Technologies, 84(2013).

Google Scholar

[11] A.V. Khvan, B. Haltstedt, C. Broeckmann, A thermodynamic evaluation of the Fe-Cr-C systemCALPHAD, 46 (2014) 24-33.

Google Scholar

[12] G. Kaptay, Partial Surface Tension o Components of a solution, Langmuir 31 (2015) 5796-5804.

DOI: 10.1021/acs.langmuir.5b00217

Google Scholar

[13] G. Kaptay, On the interfacial energy of coherent interfaces, Acta Mat. 60 (2012) 6804-6813.

DOI: 10.1016/j.actamat.2012.09.002

Google Scholar

[14] E.E. Glikman, Yu.V. Grdina, Yu.V. Piguzov, Study of fundamentals of reversible brittleness of steels by internal friction method, Metallic material Science and Heat treatment, 4 (1967) 2-12 (in Russian).

DOI: 10.1007/bf00652952

Google Scholar

[15] M.V. Sorokin, Z.V. Lavrukhina, A.N. Khodan, D.A. Maltsev, B.S. Bokstein, A.O. Rodin, A.I. Ryazanov, B.A. Gurovich, Effect of subgrain structure on the kinetics of phosphorus segregation in grain boundaries, Mat. Letters 158 (2015) 151-154.

DOI: 10.1016/j.matlet.2015.05.145

Google Scholar

[16] M. Hazewinkel (Ed. ), Encyclopaedia of Mathematics: Volume 3 Heaps and Semi-heaps Moments, Method of (In Probability Theory), Kluwer Academic Publishers, Dodrecht, (1995).

Google Scholar

[17] M.A. Saltykov, O.O. Zabusov, B.A. Gurovich, M.A. Artamonov, A.P. Dementiev, E.A. Kuleshov, S.V. Fedotova, D.A. Zhurko, Features of the microstructure of the surface of the destruction of the materials of the VVER-1000 reactor pressure vessel, Proc. of XX International Conference on the Physics of Radiation Phenomena and Radiation Material Science, 2012, 9.

DOI: 10.1016/j.jnucmat.2012.12.020

Google Scholar

[18] H. Ohtani, N. Hanaya, M. Hasebe, S. Teraoka, M. Abe, Thermodynamic analysis of the Fe-Ti-P ternary system by incorporating first-principles calculations into the CALPHAD approachCalphad, 30, 147-58(2006).

DOI: 10.1016/j.calphad.2005.09.006

Google Scholar

[19] J. Miettinen, G. Vassilev, Thermodynamic Description of Ternary Fe-X-P Systems. Part 1: Fe-Cr-P, J. Phase Equilib. Diffus., 35 (2014) 458–468.

DOI: 10.1007/s11669-014-0314-x

Google Scholar