Molecular Dynamics Simulations of the Excess Vacancy Evolution in V and V-4Ti

Article Preview

Abstract:

Titanium additions suppress the radiation swelling in vanadium alloys, but the mechanism of the suppression is debatable. It is claimed that interactions of Ti atoms with vacancies in vanadium are crucial in the suppression. In this paper we study clustering of excess vacancies in pure V and V-4Ti by molecular dynamics simulations at 700 K based on our interatomic potentials constructed earlier for the Ti-V system. For pure V the process results in the formation of a Frank sessile dislocation while the clustering in V-4Ti ends with the formation of the Ti-vacancies complexes with a specific structure. This allows us to discuss a possible mechanism of the swelling reduction in V caused by Ti alloying.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

153-166

Citation:

Online since:

May 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D. Smith, M. Billone, K. Natesan, Vanadium-base alloys for fusion first-wall/blanket applications, International Journal of Refractory Metals and Hard Materials 18 (4) (2000) 213-224.

DOI: 10.1016/s0263-4368(00)00037-8

Google Scholar

[2] D. Markovskij, R. Forrest, H. Freiesleben, V. Kovalchuk, D. Richter, K. Seidel, V. Tereshkin, S. Unholzer, Experimental investigation of radioactivities induced in fusion reactor structural materials by 14-mev neutrons, Fusion engineering and design 51 (2000).

DOI: 10.1016/s0920-3796(00)00195-2

Google Scholar

[3] K. Fukumoto, T. Morimura, T. Tanaka, A. Kimura, K. Abe, H. Takahashi, H. Matsui, Mechanical properties of vanadium based alloys for fusion reactor, Journal of nuclear materials 239 (1996) 170-175.

DOI: 10.1016/s0022-3115(96)00467-9

Google Scholar

[4] H. Chung, B. Loomis, D. Smith, Development and testing of vanadium alloys for fusion applications, Journal of nuclear materials 239 (1996) 139-156.

DOI: 10.1016/s0022-3115(96)00676-9

Google Scholar

[5] F. Garner, T. Okita, N. Sekimura, Swelling of pure vanadium and V-5Cr at ∼ 430◦ C in response to variations in neutron flux-spectra in FFTF, Journal of Nuclear Materials 417 (1) (2011) 314-318.

DOI: 10.1016/j.jnucmat.2010.12.072

Google Scholar

[6] R. Ammon, Vanadium and vanadium-alloy compatibility behaviour with lithium and sodium at elevated temperatures, International Metals Reviews 25 (1) (1980) 255-268.

DOI: 10.1179/imtr.1980.25.1.255

Google Scholar

[7] A. Impagnatiello, T. Toyama, E. Jimenez-Melero, Ti-rich precipitate evolution in vanadiumbased alloys during annealing above 400° c, Journal of Nuclear Materials 485 (2017) 122-128.

DOI: 10.1016/j.jnucmat.2016.12.040

Google Scholar

[8] J. Chen, V. Chernov, R. J. Kurtz, T. Muroga, Overview of the vanadium alloy researches for fusion reactors, Journal of Nuclear Materials 417 (1) (2011) 289-294.

DOI: 10.1016/j.jnucmat.2011.02.015

Google Scholar

[9] S. Zinkle, N. Ghoniem, Operating temperature windows for fusion reactor structural materials, Fusion Engineering and design 51 (2000) 55-71.

DOI: 10.1016/s0920-3796(00)00320-3

Google Scholar

[10] B. Loomis, D. Smith, F. Garner, Swelling of neutron-irradiated vanadium alloys, Journal of nuclear materials 179 (1991) 771-774.

DOI: 10.1016/0022-3115(91)90202-i

Google Scholar

[11] L. I. Ivanov, Y. M. Platov, Radiation physics of metals and its applications, Cambridge Int Science Publishing, (2004).

Google Scholar

[12] H. Matsui, K. Fukumoto, D. Smith, H. M. Chung, W. Van Witzenburg, S. Votinov, Status of vanadium alloys for fusion reactors, Journal of nuclear materials 233 (1996) 92-99.

DOI: 10.1016/s0022-3115(96)00331-5

Google Scholar

[13] E. Alonso, M. -J. Caturla, T. D. de la Rubia, J. Perlado, Simulation of damage production and accumulation in vanadium, Journal of nuclear materials 276 (1) (2000) 221-229.

DOI: 10.1016/s0022-3115(99)00181-6

Google Scholar

[14] P. Brommer, L. K. Béland, J. -F. Joly, N. Mousseau, Understanding long-time vacancy aggregation in iron: A kinetic activation-relaxation technique study, Physical Review B 90 (13) (2014) 134109.

DOI: 10.1103/physrevb.90.134109

Google Scholar

[15] A. Kartamyshev, A. Boev, et al, BSU Scientific bulletin : Mathematics and Physics 121 (2016) 67-78.

Google Scholar

[16] A. Lipnitskii, V. Saveliev, Development of n-body expansion interatomic potentials and its application for V, Computational Materials Science 121 (2016) 67-78.

DOI: 10.1016/j.commatsci.2016.04.008

Google Scholar

[17] W. Kohn, L. J. Sham, Self-consistent equations including exchange and correlation effects, Physical Review 140 (4A) (1965) A1133.

DOI: 10.1103/physrev.140.a1133

Google Scholar

[18] P. Hohenberg, W. Kohn, Inhomogeneous electron gas, Physical review 136 (3B) (1964) B864.

DOI: 10.1103/physrev.136.b864

Google Scholar

[19] P. E. Blöchl, Projector augmented-wave method, Physical Review B 50 (24) (1994) 17953.

DOI: 10.1103/physrevb.50.17953

Google Scholar

[20] G. Kresse, J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, Computational Materials Science 6 (1) (1996) 15-50.

DOI: 10.1016/0927-0256(96)00008-0

Google Scholar

[21] J. P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple, Physical review letters 77 (18) (1996) 3865.

DOI: 10.1103/physrevlett.77.3865

Google Scholar

[22] F. Birch, Finite elastic strain of cubic crystals, Physical Review 71 (11) (1947) 809.

DOI: 10.1103/physrev.71.809

Google Scholar

[23] F. Murnaghan, The compressibility of media under extreme pressures, Proceedings of the National Academy of Sciences 30 (9) (1944) 244-247.

DOI: 10.1073/pnas.30.9.244

Google Scholar

[24] J. H. Rose, J. R. Smith, F. Guinea, J. Ferrante, Universal features of the equation of state of metals, Physical Review B 29 (6) (1984) 2963.

DOI: 10.1103/physrevb.29.2963

Google Scholar

[25] P. Vinet, J. Ferrante, J. Smith, J. Rose, A universal equation of state for solids, Journal of Physics C: Solid State Physics 19 (20) (1986) L467.

DOI: 10.1088/0022-3719/19/20/001

Google Scholar

[26] L. Marchukova, N. Matveeva, I. Kornilov, Phase studies and some properties of vanadiumtitanium system alloys, Izvestiya Vysshikh Uchebnykh Zavedenij. Tsvetnaya Metallurgiya (1975) 131-134.

Google Scholar

[27] E. Rudy, Ternary phase equilibria in transition metal-boron-carbon-silicon systems. part 5. compendium of phase diagram data, Tech. rep., DTIC Document (1969).

DOI: 10.21236/ad0820649

Google Scholar

[28] L. -C. Ming, M. Manghnani, K. Katahara, Phase transformations in the ti-v system under high pressure up to 25 gpa, Acta Metallurgica 29 (3) (1981) 479-485.

DOI: 10.1016/0001-6160(81)90071-7

Google Scholar

[29] Y. S. Touloukian, R. K. Kirby, R. E. Taylor, P. D. Desai, Thermophysical Properties of Matter - the TPRC Data Series. Volume 12. Thermal Expansion Metallic Elements and Alloys, IFI/Plenum, New York, (1975).

DOI: 10.1007/978-1-4757-1622-1_6

Google Scholar

[30] Y. Touloukian, S. Saxena, P. Hestermans, Thermophysical properties of matter-the tprc data series. volume 11. viscosity, Tech. rep., DTIC Document (1975).

Google Scholar

[31] H. Schultz, Defect parameters of bcc metals: group-specific trends, Materials Science and Engineering: A 141 (2) (1991) 149-167.

DOI: 10.1016/0921-5093(91)90766-g

Google Scholar

[32] A. Y. Kuksin, A. Yanilkin, Formation of defects in displacement cascades in molybdenum: Simulation of molecular dynamics, The Physics of Metals and Metallography 117 (3) (2016) 230-237.

DOI: 10.1134/s0031918x1602006x

Google Scholar

[33] Y. Candra, K. Fukumoto, A. Kimura, H. Matsui, Microstructural evolution and hardening of neutron irradiated vanadium alloys at low temperatures in japan material testing reactor, Journal of nuclear materials 271 (1999) 301-305.

DOI: 10.1016/s0022-3115(98)00716-8

Google Scholar

[34] W. G. Hoover, Canonical dynamics: equilibrium phase-space distributions, Physical review A 31 (3) (1985) 1695.

DOI: 10.1103/physreva.31.1695

Google Scholar

[35] H. J. Berendsen, J. v. Postma, W. F. van Gunsteren, A. DiNola, J. Haak, Molecular dynamics with coupling to an external bath, The Journal of chemical physics 81 (8) (1984) 3684-3690.

DOI: 10.1063/1.448118

Google Scholar

[36] A. Stukowski, Visualization and analysis of atomistic simulation data with ovito-the open visualization tool, Modelling and Simulation in Materials Science and Engineering 18 (1) (2009) 015012.

DOI: 10.1088/0965-0393/18/1/015012

Google Scholar

[37] A. Stukowski, K. Albe, Extracting dislocations and non-dislocation crystal defects from atomistic simulation data, Modelling and Simulation in Materials Science and Engineering 18 (8) (2010) 085001.

DOI: 10.1088/0965-0393/18/8/085001

Google Scholar

[38] J. Gao, L. Cui, F. Wan, Characterization of microstructure in hydrogen ion irradiated vanadium at room temperature and the microstructural evolution during post-irradiation annealing, Materials Characterization 111 (2016) 1-7.

DOI: 10.1016/j.matchar.2015.11.006

Google Scholar

[39] S. M. Davis, A. B. Belonoshko, B. Johansson, Searchfill: A stochastic optimization code for detecting atomic vacancies in crystalline and non-crystalline systems, Computer Physics Communications 182 (5) (2011) 1105-1110.

DOI: 10.1016/j.cpc.2010.12.009

Google Scholar

[40] T. Leguey, R. Pareja, E. Hodgson, Annealing of radiation-induced defects in vanadium and vanadium-titanium alloys, Journal of nuclear materials 231 (3) (1996) 191-198.

DOI: 10.1016/0022-3115(96)00373-x

Google Scholar