[1]
D. Smith, M. Billone, K. Natesan, Vanadium-base alloys for fusion first-wall/blanket applications, International Journal of Refractory Metals and Hard Materials 18 (4) (2000) 213-224.
DOI: 10.1016/s0263-4368(00)00037-8
Google Scholar
[2]
D. Markovskij, R. Forrest, H. Freiesleben, V. Kovalchuk, D. Richter, K. Seidel, V. Tereshkin, S. Unholzer, Experimental investigation of radioactivities induced in fusion reactor structural materials by 14-mev neutrons, Fusion engineering and design 51 (2000).
DOI: 10.1016/s0920-3796(00)00195-2
Google Scholar
[3]
K. Fukumoto, T. Morimura, T. Tanaka, A. Kimura, K. Abe, H. Takahashi, H. Matsui, Mechanical properties of vanadium based alloys for fusion reactor, Journal of nuclear materials 239 (1996) 170-175.
DOI: 10.1016/s0022-3115(96)00467-9
Google Scholar
[4]
H. Chung, B. Loomis, D. Smith, Development and testing of vanadium alloys for fusion applications, Journal of nuclear materials 239 (1996) 139-156.
DOI: 10.1016/s0022-3115(96)00676-9
Google Scholar
[5]
F. Garner, T. Okita, N. Sekimura, Swelling of pure vanadium and V-5Cr at ∼ 430◦ C in response to variations in neutron flux-spectra in FFTF, Journal of Nuclear Materials 417 (1) (2011) 314-318.
DOI: 10.1016/j.jnucmat.2010.12.072
Google Scholar
[6]
R. Ammon, Vanadium and vanadium-alloy compatibility behaviour with lithium and sodium at elevated temperatures, International Metals Reviews 25 (1) (1980) 255-268.
DOI: 10.1179/imtr.1980.25.1.255
Google Scholar
[7]
A. Impagnatiello, T. Toyama, E. Jimenez-Melero, Ti-rich precipitate evolution in vanadiumbased alloys during annealing above 400° c, Journal of Nuclear Materials 485 (2017) 122-128.
DOI: 10.1016/j.jnucmat.2016.12.040
Google Scholar
[8]
J. Chen, V. Chernov, R. J. Kurtz, T. Muroga, Overview of the vanadium alloy researches for fusion reactors, Journal of Nuclear Materials 417 (1) (2011) 289-294.
DOI: 10.1016/j.jnucmat.2011.02.015
Google Scholar
[9]
S. Zinkle, N. Ghoniem, Operating temperature windows for fusion reactor structural materials, Fusion Engineering and design 51 (2000) 55-71.
DOI: 10.1016/s0920-3796(00)00320-3
Google Scholar
[10]
B. Loomis, D. Smith, F. Garner, Swelling of neutron-irradiated vanadium alloys, Journal of nuclear materials 179 (1991) 771-774.
DOI: 10.1016/0022-3115(91)90202-i
Google Scholar
[11]
L. I. Ivanov, Y. M. Platov, Radiation physics of metals and its applications, Cambridge Int Science Publishing, (2004).
Google Scholar
[12]
H. Matsui, K. Fukumoto, D. Smith, H. M. Chung, W. Van Witzenburg, S. Votinov, Status of vanadium alloys for fusion reactors, Journal of nuclear materials 233 (1996) 92-99.
DOI: 10.1016/s0022-3115(96)00331-5
Google Scholar
[13]
E. Alonso, M. -J. Caturla, T. D. de la Rubia, J. Perlado, Simulation of damage production and accumulation in vanadium, Journal of nuclear materials 276 (1) (2000) 221-229.
DOI: 10.1016/s0022-3115(99)00181-6
Google Scholar
[14]
P. Brommer, L. K. Béland, J. -F. Joly, N. Mousseau, Understanding long-time vacancy aggregation in iron: A kinetic activation-relaxation technique study, Physical Review B 90 (13) (2014) 134109.
DOI: 10.1103/physrevb.90.134109
Google Scholar
[15]
A. Kartamyshev, A. Boev, et al, BSU Scientific bulletin : Mathematics and Physics 121 (2016) 67-78.
Google Scholar
[16]
A. Lipnitskii, V. Saveliev, Development of n-body expansion interatomic potentials and its application for V, Computational Materials Science 121 (2016) 67-78.
DOI: 10.1016/j.commatsci.2016.04.008
Google Scholar
[17]
W. Kohn, L. J. Sham, Self-consistent equations including exchange and correlation effects, Physical Review 140 (4A) (1965) A1133.
DOI: 10.1103/physrev.140.a1133
Google Scholar
[18]
P. Hohenberg, W. Kohn, Inhomogeneous electron gas, Physical review 136 (3B) (1964) B864.
DOI: 10.1103/physrev.136.b864
Google Scholar
[19]
P. E. Blöchl, Projector augmented-wave method, Physical Review B 50 (24) (1994) 17953.
DOI: 10.1103/physrevb.50.17953
Google Scholar
[20]
G. Kresse, J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, Computational Materials Science 6 (1) (1996) 15-50.
DOI: 10.1016/0927-0256(96)00008-0
Google Scholar
[21]
J. P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple, Physical review letters 77 (18) (1996) 3865.
DOI: 10.1103/physrevlett.77.3865
Google Scholar
[22]
F. Birch, Finite elastic strain of cubic crystals, Physical Review 71 (11) (1947) 809.
DOI: 10.1103/physrev.71.809
Google Scholar
[23]
F. Murnaghan, The compressibility of media under extreme pressures, Proceedings of the National Academy of Sciences 30 (9) (1944) 244-247.
DOI: 10.1073/pnas.30.9.244
Google Scholar
[24]
J. H. Rose, J. R. Smith, F. Guinea, J. Ferrante, Universal features of the equation of state of metals, Physical Review B 29 (6) (1984) 2963.
DOI: 10.1103/physrevb.29.2963
Google Scholar
[25]
P. Vinet, J. Ferrante, J. Smith, J. Rose, A universal equation of state for solids, Journal of Physics C: Solid State Physics 19 (20) (1986) L467.
DOI: 10.1088/0022-3719/19/20/001
Google Scholar
[26]
L. Marchukova, N. Matveeva, I. Kornilov, Phase studies and some properties of vanadiumtitanium system alloys, Izvestiya Vysshikh Uchebnykh Zavedenij. Tsvetnaya Metallurgiya (1975) 131-134.
Google Scholar
[27]
E. Rudy, Ternary phase equilibria in transition metal-boron-carbon-silicon systems. part 5. compendium of phase diagram data, Tech. rep., DTIC Document (1969).
DOI: 10.21236/ad0820649
Google Scholar
[28]
L. -C. Ming, M. Manghnani, K. Katahara, Phase transformations in the ti-v system under high pressure up to 25 gpa, Acta Metallurgica 29 (3) (1981) 479-485.
DOI: 10.1016/0001-6160(81)90071-7
Google Scholar
[29]
Y. S. Touloukian, R. K. Kirby, R. E. Taylor, P. D. Desai, Thermophysical Properties of Matter - the TPRC Data Series. Volume 12. Thermal Expansion Metallic Elements and Alloys, IFI/Plenum, New York, (1975).
DOI: 10.1007/978-1-4757-1622-1_6
Google Scholar
[30]
Y. Touloukian, S. Saxena, P. Hestermans, Thermophysical properties of matter-the tprc data series. volume 11. viscosity, Tech. rep., DTIC Document (1975).
Google Scholar
[31]
H. Schultz, Defect parameters of bcc metals: group-specific trends, Materials Science and Engineering: A 141 (2) (1991) 149-167.
DOI: 10.1016/0921-5093(91)90766-g
Google Scholar
[32]
A. Y. Kuksin, A. Yanilkin, Formation of defects in displacement cascades in molybdenum: Simulation of molecular dynamics, The Physics of Metals and Metallography 117 (3) (2016) 230-237.
DOI: 10.1134/s0031918x1602006x
Google Scholar
[33]
Y. Candra, K. Fukumoto, A. Kimura, H. Matsui, Microstructural evolution and hardening of neutron irradiated vanadium alloys at low temperatures in japan material testing reactor, Journal of nuclear materials 271 (1999) 301-305.
DOI: 10.1016/s0022-3115(98)00716-8
Google Scholar
[34]
W. G. Hoover, Canonical dynamics: equilibrium phase-space distributions, Physical review A 31 (3) (1985) 1695.
DOI: 10.1103/physreva.31.1695
Google Scholar
[35]
H. J. Berendsen, J. v. Postma, W. F. van Gunsteren, A. DiNola, J. Haak, Molecular dynamics with coupling to an external bath, The Journal of chemical physics 81 (8) (1984) 3684-3690.
DOI: 10.1063/1.448118
Google Scholar
[36]
A. Stukowski, Visualization and analysis of atomistic simulation data with ovito-the open visualization tool, Modelling and Simulation in Materials Science and Engineering 18 (1) (2009) 015012.
DOI: 10.1088/0965-0393/18/1/015012
Google Scholar
[37]
A. Stukowski, K. Albe, Extracting dislocations and non-dislocation crystal defects from atomistic simulation data, Modelling and Simulation in Materials Science and Engineering 18 (8) (2010) 085001.
DOI: 10.1088/0965-0393/18/8/085001
Google Scholar
[38]
J. Gao, L. Cui, F. Wan, Characterization of microstructure in hydrogen ion irradiated vanadium at room temperature and the microstructural evolution during post-irradiation annealing, Materials Characterization 111 (2016) 1-7.
DOI: 10.1016/j.matchar.2015.11.006
Google Scholar
[39]
S. M. Davis, A. B. Belonoshko, B. Johansson, Searchfill: A stochastic optimization code for detecting atomic vacancies in crystalline and non-crystalline systems, Computer Physics Communications 182 (5) (2011) 1105-1110.
DOI: 10.1016/j.cpc.2010.12.009
Google Scholar
[40]
T. Leguey, R. Pareja, E. Hodgson, Annealing of radiation-induced defects in vanadium and vanadium-titanium alloys, Journal of nuclear materials 231 (3) (1996) 191-198.
DOI: 10.1016/0022-3115(96)00373-x
Google Scholar