The Investigation of Dislocation Behaviour in Molybdenum Using Molecular Dynamics

Article Preview

Abstract:

In this work the behaviour of edge 1/2<111>{110} and screw 1/2<111>{112} dislocations were investigated by the method of molecular dynamics. The results of calculations show that molecular dynamics with used interatimic potential are able to properly describe the dislocation behavior. Two regimes of dislocation movement in molybdenum are shown to exist: thermo-activated and viscous regimes. Obtained results of dislocation mobility was fitted using the dislocation mobility law.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

175-181

Citation:

Online since:

May 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] El-Genk, M, Tournier, J., A review of refractory metal alloys and mechanically alloyed-oxide dispersion strengthened steels for space nuclear power systems, Journal of Nuclear Materials 340, 1 (2005), 93-112.

DOI: 10.1016/j.jnucmat.2004.10.118

Google Scholar

[2] Lundberg, L.B., Los alamos scientific laboratory: progress report (1980), 5-9.

Google Scholar

[3] Gottstein, G., Physical foundations of materials science (2004).

Google Scholar

[4] Arsenlis, A., Cai, W., Tang, M., Rhee, M., Oppelstrup, T., Hommes, G., Pierce, T. G., and Bulatov, V. V., Enabling strain hardening simulations with dislocation dynamics, Modelling and Simulation in Materials Science and Engineering 15, 6 (2007).

DOI: 10.1088/0965-0393/15/6/001

Google Scholar

[5] Devincre, B., Madec, R., Monnet, G., Queyreau, S., Gatti, R., and Kubin, L., Modeling crystal plasticity with dislocation dynamics simulations: The microMegas, code, Mechanics of Nanoobjects 1, 1 (2011), 81-99.

Google Scholar

[6] Krasnikov, V., Kuksin, A., Mayer, A., Yanilkin, A., Plastic deformation under high-rate loading: The multiscale approach, Physics of the Solid State 52, 7 (2010), 1386-1396.

DOI: 10.1134/s1063783410070115

Google Scholar

[7] Krasnikov, V. S., Mayer, A. E., Yalovets, A. P., Dislocation based high-rate plasticity model and its application to plate-impact and ultra short electron irradiation simulations, International Journal of Plasticity 27, 8 (2011), 1294-1308.

DOI: 10.1016/j.ijplas.2011.02.008

Google Scholar

[8] Osetsky, Y. N., Bacon, D. J., An atomic-level model for studying the dynamics of edge dislocations in metals, Modelling and Simulation in Materials Science and Engineering 11, 4 (2003), 427.

DOI: 10.1088/0965-0393/11/4/302

Google Scholar

[9] Domain, C., and Monnet, G., Simulation of Screw Dislocation Motion in Iron by Molecular Dynamics Simulations, Physical Review Letters 95, 21 (2005), 215506.

DOI: 10.1103/physrevlett.95.215506

Google Scholar

[10] Po, G., Cui, Y., Rivera, D., Cereceda, D., Swinburne, T. D., Marian, J., Ghoniem, N., A phenomenological dislocation mobility law for bcc metals, Acta Materialia 119 (2016), 123-135.

DOI: 10.1016/j.actamat.2016.08.016

Google Scholar

[11] Terentyev, D., Bonny, G., Domain, C., Pasianot, R. C., Interaction of a 1/2{111} screw dislocation with Cr precipitates in bcc Fe studied by molecular dynamics, Physical Review B - Condensed Matter and Materials Physics 81 21 (2010), 1-12.

DOI: 10.1103/physrevb.81.214106

Google Scholar

[12] Plimpton, S., Fast Parallel Algorithms for Short - Range Molecular Dynamics, Journal of Computational Physics 117, June 1994 (1995), 1-19.

DOI: 10.1006/jcph.1995.1039

Google Scholar

[13] Smirnova, D. E., Kuksin, A. Y., Starikov, S. V. Investigation of point defects diffusion in bcc uranium and U-Mo alloys, Journal of Nuclear Materials 458 (2015), 304-311.

DOI: 10.1016/j.jnucmat.2014.12.080

Google Scholar

[14] Stukowski, A., Visualization and analysis of atomistic simulation data with OVITO-the Open Visualization Tool, Modelling Simul. Mater. Sci. Eng. 18, 1 (2009), 015012.

DOI: 10.1088/0965-0393/18/1/015012

Google Scholar

[15] Stukowski, A., Bulatov, V. V., Arsenlis, A., Automated identification and indexing of dislocations in crystal interfaces, Modelling and Simulation in Materials Science and Engineering 20, 8 (2012), 085007.

DOI: 10.1088/0965-0393/20/8/085007

Google Scholar

[16] Wang, G., Strachan, A., Cagin, T., Iii, W. G., Molecular dynamics simulations of 1/2 a screw dislocation in Ta, Materials Science and Engineering 310 (2001), 133-137.

DOI: 10.1016/s0921-5093(00)01739-1

Google Scholar

[17] Kuksin, A. Y., Yanilkin, A. V., Atomistic simulation of the motion of dislocations in metals under phonon drag conditions, Physics of the Solid State 55, 5 (2013), 1010-1019.

DOI: 10.1134/s1063783413050193

Google Scholar

[18] Chang, J. P., Cai, W., Bulatov, V. V., and Yip, S., Molecular dynamics simulations of motion of edge and screw dislocations in a metals, Computational Materials Science 23 (2002), 111-115.

DOI: 10.1016/s0927-0256(01)00221-x

Google Scholar

[19] Leiko E. B., Lotsko D. B., Nadgorny E. M., Trefilov V. I., Temperature dependence of dislocation mobility in molybdenum monocrystal, Physics of the Solid State 9, 5 (1975), 2735-2742.

Google Scholar

[20] Gilbert, M. R., Queyreau, S., and Marian, J., Stress and temperature dependence of screw dislocation mobility in α-Fe by molecular dynamics, Physical Review B - Condensed Matter and Materials Physics 84, 17 (2011), 1-11.

DOI: 10.1103/physrevb.84.174103

Google Scholar

[21] U. K. Kocks, A. S. Argon, M. F. Asby, Progress in Materials Science 19, 19 (1975), 1.

Google Scholar