Study of Niobium Diffusion and Clusterization in hcp Zr-Nb Dilute Alloys

Article Preview

Abstract:

We perform atomistic simulations aimed on study of diffusion of constituents and niobium precipitation in hcp Zr-Nb. We report diffusivities of Zr and Nb in hcp Zr-Nb alloys computed for the models containing up to 5 at.% of niobium. The calculated diffusivity of niobium rises with increase of its content in the alloy. The simulations also show that for a studied concentration range addition of niobium slightly enhances self-diffusion of zirconium in the alloys. The work is also devoted to description of niobium incorporation and clusterization in hcp zirconium. It is confirmed that for a single niobium atom incorporated in hcp zirconium lattice the octahedral position is the most favorable. We estimated the energy describing niobium cluster formation in pure hcp zirconium. According to the simulation results, we can suggest that the minimum niobium cluster size that can be expected in hcp Zr corresponds to about 80 atoms.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

167-174

Citation:

Online since:

May 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M.R. Tonks, D. Andersson, S.R. Phillpot, Y. Zhang, R. Williamson, C.R. Stanek, B.P. Uberuaga, S.L. Hayes, Mechanistic materials modeling for nuclear fuel performance, Annals of nuclear energy 105 (2017) 11-24.

DOI: 10.1016/j.anucene.2017.03.005

Google Scholar

[2] H.L. Yang, Y. Matsukawa, S. Kano, Z.G. Duan, K. Murakami, H. Abe, Investigation on microstructural evolution and hardening mechanism in dilute Zr-Nb binary alloys, Journal of Nuclear Materials 481 (2016) 117-124.

DOI: 10.1016/j.jnucmat.2016.09.016

Google Scholar

[3] D. Khatamian, Solubility and partitioning of hydrogen in metastable Zr-based alloys used in the nuclear industry, Journal of Alloys and Compounds 293–295 (1999) 893–899.

DOI: 10.1016/s0925-8388(99)00388-6

Google Scholar

[4] R. Montgomery, C. Tomé, W. Liu, A. Alankar, G. Subramaniane, C. Stanek, Use of multiscale zirconium alloy deformation models in nuclear fuel behavior analysis, Journal of Computational Physics 328 (2017) 278–300.

DOI: 10.1016/j.jcp.2016.09.051

Google Scholar

[5] D.E. Smirnova, S.V. Starikov, An interatomic potential for simulation of Zr-Nb system, Computational Materials Science 129 (2017) 259–272.

DOI: 10.1016/j.commatsci.2016.12.016

Google Scholar

[6] G.S. Was, J.P. Wharry, B. Frisbie, B.D. Wirth, D. Morgan, J.D. Tucker, T.R. Allen, Assessment of radiation-induced segregation mechanisms in austenitic and ferritic–martensitic alloys, Journal of Nuclear Materials 411 (2011) 41-50.

DOI: 10.1016/j.jnucmat.2011.01.031

Google Scholar

[7] S. Plimpton, Fast Parallel Algorithms for Short-Range Molecular Dynamics, J Comp Phys, 117 (1995) 1-19.

Google Scholar

[8] J. Li, Modelling Simul. Mater. Sci. Eng. 11 (2003) 173.

Google Scholar

[9] J. Horváth, F. Dyment, H. Mehrer, Anomalous self-diffusion in a single crystal of alpha-zirconium, Journal of Nuclear Materials 126 (3) (1984) 206–214.

DOI: 10.1016/0022-3115(84)90030-8

Google Scholar

[10] G.M. Hood, H. Zhou, R.J. Schultz, N. Matsuura, J.A. Roy, J.A. Jackman, Self- and Hf diffusion in a-Zr and in dilute, Fe-free Zr(Ti) and Zr(Nb) alloys, Defect Diffus. Forum 143–147 (1997) 49–54.

DOI: 10.4028/www.scientific.net/ddf.143-147.49

Google Scholar

[11] T. Lundy, Diffusion in body-centered cubic metals zirconium, vanadium, niobium, and tantalum (thesis), report ORNL-3617 (1964), Tech. rep.

DOI: 10.2172/4059601

Google Scholar

[12] M.I. Mendelev, B.S. Bokstein, Molecular dynamics study of selfdiffusion in Zr, Phil. Mag. 90 (5) (2010) 637.

Google Scholar

[13] G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B. 54 (16) (1996) 11169.

DOI: 10.1103/physrevb.54.11169

Google Scholar

[14] H.J. Monkhorst, J.D. Pack, Special points for brillouin-zone integrations, Phys. Rev. B 13 (1976) 5188–5192.

DOI: 10.1103/physrevb.13.5188

Google Scholar

[15] G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projectoraugmented wave method, Phys. Rev. B 59 (3) (1999) 1758–1775.

DOI: 10.1103/physrevb.59.1758

Google Scholar

[16] C. Domain, Ab initio modelling of defect properties with substitutional and interstitials elements in steels and Zr alloys, Journal of Nuclear Materials 351 (2006) 1–19.

DOI: 10.1016/j.jnucmat.2006.02.025

Google Scholar

[17] A. Seko, S.R. Nishitani, I. Tanaka, H. Adachi, E.F. Fujita, First-principles calculation on free energy of precipitate nucleation, Computer Coupling of Phase Diagrams and Thermochemistry 28 (2004) 173–176.

DOI: 10.1016/j.calphad.2004.07.003

Google Scholar