Effective Atomic Displacements in Fe-9at.%Cr Alloy

Article Preview

Abstract:

A computer simulation of atomic displacement cascades in Fe-9at.%Cr binary alloy has been performed by molecular dynamics method for temperature of 300 K and cascade energies from 100 eV to 20 keV. The average number of Frenkel pairs produced in cascade has been calculated. The data on point defect clusterization have been obtained. Obtained evaluations of effective fraction of surviving defects are well approximated by the sum of power and linear functions of cascade energy. Increased chromium fraction in the self-interstitial (SIA) configurations has been observed and has been explained by combination of two factors: positive binding energy of Cr atom with SIAs and mobility of SIA configuration. The diffusion coefficient of single SIA configuration in the matrix of pure bcc Fe has been evaluated for the temperature range of 300 – 1000 K. We have prepared 100 group neutron cross-sections of effective displacement generation in Fe-9at.%Cr binary alloy. It has been shown that effective dpa generation rate can be 2-3 times lower than corresponding rates of conventional dpa generation rate.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

139-149

Citation:

Online since:

May 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] E. E. Bloom et al., Materials to Deliver the Promise of Fusion Power—Progress and Challenges, J. Nucl. Mater., 329-333 A (2004) 12-19.

DOI: 10.1016/j.jnucmat.2004.04.141

Google Scholar

[2] L. K. Mansur et al., 'Materials Needs for Fusion, Generation IV Fission Reactors and Spallation Neutron Sources - Similarities and Differences, J. Nucl. Mater., 329-333 A 166 (2004) 166-172.

DOI: 10.1016/j.jnucmat.2004.04.016

Google Scholar

[3] N. Baluc, Materials for Fusion Power Reactors, Plasma Phys. Controlled Fusion, 48 (2006) B165-B177.

DOI: 10.1088/0741-3335/48/12b/s16

Google Scholar

[4] N.J. Norgett, M.T. Robinson, I.M. Torrens, A proposed method of calculating displacement dose rate, Nucl. Eng. And Design, 33 (1975) 50-54.

DOI: 10.1016/0029-5493(75)90035-7

Google Scholar

[5] L. Malerba, D. Terentyev, P. Olsson, R. Chakarova, and J. Wallenius, Molecular Dynamics Simulation of Displacement Cascades in Fe-Cr Alloys, J. Nucl. Mater. 329–333 (2) (2004) 1156–1160.

DOI: 10.1016/j.jnucmat.2004.04.270

Google Scholar

[6] D. A. Terentyev, L. Malerba, R. Chakarova, K. Nordlund, P. Olsson, M. Rieth, and J. Wallenius, Displacement Cascades in Fe–Cr. A molecular dynamics study, J. Nucl. Mater. 349 (1) (2006) 119–132.

DOI: 10.1016/j.jnucmat.2005.10.013

Google Scholar

[7] J. Wallenius, P. Olsson, C. Lagerstedt, N. Sandberg, R. Chakarova, and V. Pontikis, Modeling of Chromium Precipitation in Fe-Cr Alloys, Phys. Rev. B. 69 (2004) 94103_1–94103_9.

DOI: 10.1103/physrevb.69.094103

Google Scholar

[8] J.H. Shim, H.J. Lee, and B.D. Wirth, Molecular Dynamics Simulation of Primary Irradiation Defect Formation in Fe–10% Cr Alloy, J. Nucl. Mater. 351 (1–3) (2006) 56—64.

DOI: 10.1016/j.jnucmat.2006.02.021

Google Scholar

[9] M. Tikhonchev, V. Svetukhin, A. Kadochkin, E. Gaganidze, MD simulation of atomic displacement cascades in Fe–10 at. %Cr binary alloy, J. Nucl. Mater. 395 (2009) 50-57.

DOI: 10.1016/j.jnucmat.2009.09.015

Google Scholar

[10] M. Tikhonchev, V. Svetukhin, A. Kadochkin, and E. Gaganidze. Molecular Dynamics Simulation of Atomic Displacement Cascades in Fe–9 at % Cr and Fe–9 at % Cr–0. 1 at % C Alloys, Russian Metallurgy (Metally)5 (2011) 415-422.

DOI: 10.1134/s0036029511050132

Google Scholar

[11] K. Vörtler, C. Björkas, D. Terentyev, L. Malerba, K. Nordlund, The effect of Cr concentration on radiation damage in Fe–Cr alloys, J. Nucl. Mater. 382 (2008) 24–30.

DOI: 10.1016/j.jnucmat.2008.09.007

Google Scholar

[12] M. Tikhonchev, V. Svetukhin, E. Gaganidze, MD simulation of atomic displacement cascades near chromium-rich clusters in FeCr alloy, J. Nucl. Mater. 442 (2013) S618–S623.

DOI: 10.1016/j.jnucmat.2012.11.058

Google Scholar

[13] M. Tikhonchev, A. Muralev, V. Svetukhin. MD simulation of atomic displacement cascades in random Fe-9at. %Cr binary alloy with twin grain boundaries, Fusion Science and Technology, 66(1) (2014) 91-99.

DOI: 10.13182/fst13-721

Google Scholar

[14] K. P. Zolnikov, A. V. Korchuganov, D. S. Kryzhevich, Molecular dynamics simulation of primary radiation damage in Fe–Cr alloy, Journal of Physics: Conference Series 774 (2016) 012130.

DOI: 10.1088/1742-6596/774/1/012130

Google Scholar

[15] G.J. Ackland, M.I. Mendelev, D.J. Srolovitz, S.W. Han, A.V. Barashev, J, Development of an interatomic potential for phosphorus impurities in α-iron. Phys. Condens. Matter. 16 (2004) S2629-S2642.

DOI: 10.1088/0953-8984/16/27/003

Google Scholar

[16] P. Olsson, J. Wallenius, C. Domain, K. Nordlund, L. Malerba, Two-band modeling of -prime phase formation in Fe-Cr, PHYSICAL REVIEW B 72 (2005) 214119.

DOI: 10.1103/physrevb.74.229906

Google Scholar

[17] A. Caro, D. A. Crowson, and M. Caro, Classical Many-Body Potential for Concentrated Alloys and the Inversion of Order in Iron-Chromium Alloys, Phys. Rev. Lett. 95 (2005) 075702.

DOI: 10.1103/physrevlett.95.075702

Google Scholar

[18] D.J. Bacon, A.F. Calder, F. Gao, Computer simulation of displacement cascade effects in metals, Radiat. Effects Def. Sol. 141 (1997) 283-310.

DOI: 10.1080/10420159708211577

Google Scholar

[19] S.J. Wooding, D.J. Bacon, W.J. Phythian, A computer simulation study of displacement cascades in α-titanium, Philos. Mag. A 72 (1995) 1261-1279.

DOI: 10.1080/01418619508236254

Google Scholar

[20] ASTM E521, (E521-89) Practice for Neutron Radiation Damage Simulation by Charged-Particle Irradiation. Annual Book of ASTM Standards, vol. 12. 02, (1995).

Google Scholar

[21] R. Stoller and L. Greenwood, An evaluation of neutron energy spectrum effects in iron based on molecular dynamics displacement cascade simulations, in: Effects of Radiation on Materials, ASTM STP-1366 (2000) 548–559.

DOI: 10.1520/stp12414s

Google Scholar

[22] L.R. Greenwood and P.K. Smither, SPECTER: Neutron Damage Calculations for Materials Irradiations, ANL/FPP-TM-197 (1985).

DOI: 10.2172/6022143

Google Scholar

[23] E. Daum, U. Fischer, Long-term activation potential of the steel eurofer as structural material of a demo breeder blanket, Fusion Engineering and Design, 49–50 (2000) 529–533.

DOI: 10.1016/s0920-3796(00)00274-x

Google Scholar

[24] C. Björkas, K. Nordlund, L. Malerba, D. Terentyev, P. Olsson, Simulation of displacement cascades in Fe90Cr10 using a two band model potential, J. Nucl. Mater. 372, Issues 2–3 (2008) 312–317.

DOI: 10.1016/j.jnucmat.2007.03.265

Google Scholar

[25] S.L. Dudarev, The non-Arrhenius migration of interstitial defects in bcc transition metals, Comptes Rendus Physique, Vol. 9, Iss. 3–4 (2008) 409-417.

DOI: 10.1016/j.crhy.2007.09.019

Google Scholar

[26] P. M. Derlet, D. Nguyen-Manh, S. L. Dudarev, Multiscale modeling of crowdion and vacancy defects in body-centered-cubic transition metals, Phys. Rev. B 76 (2007) 054107.

DOI: 10.1103/physrevb.76.054107

Google Scholar