Irradiation Creep of Uranium-Plutonium Nitride Fuel and Serviceability of Fuel Element

Article Preview

Abstract:

Article discusses experimental data on creep of (U,Pu)N and other uranium compounds, and possible mechanism of mass-transfer. Proposed equation describes the following creep features: weak temperature dependence at T < 1000°C, creep acceleration in a fuel with micron-sized grains, and acceleration with the content of second phases formed by impurities and fission products. The difference in creep behavior in reactors with thermal and fast neutrons environmentsis discussed. Comparison of irradiation creep of nitride fuel and properties of cladding materials shows that under parameters of fast reactors and typical design of fuel element it is impossible to implement restraining of external nitride swelling. As initial porosity in the fuel will not compensate the nitride swelling, the cladding of fuel element will work in a mode of following the changing of fuel size. Some suggestions on the cladding material properties are done.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

91-100

Citation:

Online since:

May 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] I. I. Konovalov, B.A. Tarasov and E.M. Glagovskiy, Structurally-phase state and creep of mixed nitride fuel, 2016 IOP Conf. Ser.: Mater. Sci. Eng. 130 012030.

DOI: 10.1088/1757-899x/130/1/012030

Google Scholar

[2] J.L. Routbort and R.N. Singh, Elastic, diffusional, and mechanical properties of carbide and nitride nuclear fuels – a review, J. Nucl. Mat. 58 (1975) 78-114.

DOI: 10.1016/0022-3115(75)90169-5

Google Scholar

[3] D.J. Clough, Creep properties of oxide and carbide fuels under irradiation, J. Nucl. Mat. 65 (1977) 24-36.

DOI: 10.1016/b978-0-7204-0572-9.50008-3

Google Scholar

[4] V.B. Malygin K.V. Naboichenko, A.S. Shapovalov, Yu.K. Bibilashvili, Recommendations for calculating the rate of irradiation-induced creep of oxide fuel when analyzing fuel-element serviceability, Atomic Energy 108/2 (2010) 121-126.

DOI: 10.1007/s10512-010-9266-3

Google Scholar

[5] V.B. Malygin and A.N. Sokolov, Complex of experimental tools for investigation of irradiation creep and dimensional stability of fuel for power reactors, Engineering Physics 4 (2004) 27-30.

Google Scholar

[6] D. Brucklacher and W. Dienst, Creep behavior of ceramic fuels under neutron irradiation, J. Nucl. Mat. 42/3 (1972) 280-285.

DOI: 10.1016/0022-3115(72)90079-7

Google Scholar

[7] D.J. Clough, Observations on the low-temperature creep properties of uranium carbide under irradiation, J. Nucl. Mat. 56 (1975) 279-286.

DOI: 10.1016/0022-3115(75)90044-6

Google Scholar

[8] I.I. Konovalov, Theory and calculation of nuclear fuel swelling, VNIINM 2001-3, 2001 (in Russian).

Google Scholar

[9] C.S. Olsen, Steady-State Creep Model for UO2, Trans. Amer. Nucl. Soc. 22 (1975) 210-211.

Google Scholar

[10] I.I. Konovalov et al., Effective displacement per atom – edpa, Computer program (2014) № 2014613852 (in Russian).

Google Scholar

[11] Hj. Matzke, Atomic mechanisms of mass transport in ceramic nuclear fuel materials, J. Chem. Soc. Faradey Trans. 86 (1990) 1243-1256.

DOI: 10.1039/ft9908601243

Google Scholar

[12] Hj. Matzke, Point Defects and Transport Properties in Carbides and Nitrides, Studies in Inorg. Chem. 9 (1989) 353-384.

Google Scholar

[13] M.H. Bradbury and Hj. Matzke, Self-diffusion of plutonium in high burnup simulated (U, Pu)(C, N) and (U, Pu)N, J. Nucl. Mat. 91/1 (1980) 13-22.

DOI: 10.1016/0022-3115(80)90027-6

Google Scholar

[14] P. Zeisser , G. Maraniello, C. Merlini, In-pile measurement of fission enhanced creep and swelling of uranium nitride, J. Nucl. Mat. 65 (1977) 48-60.

DOI: 10.1016/b978-0-7204-0572-9.50010-1

Google Scholar

[15] S.I. Porollo, A.A. Ivanov, Yu.V. Konobeev et al., Swelling and radiation creep of three Russian austenitic steels irradiated by neutrons in a wide dose range and temperatures. Atomic Energy. 110/4 (2011) 207-214.

DOI: 10.1007/s10512-011-9419-z

Google Scholar

[16] A.M. Dvoriashin, S.I. Porollo, Yu.V. Konobeev et al. Mechanical properties and microstructure of three Russian ferritic/martensitic steels irradiated in BN-350 reactor to 50 dpa at 490 °C, J. Nucl. Mat. 361-370 Part A (2007) 92-96.

DOI: 10.1016/j.jnucmat.2007.03.161

Google Scholar

[17] M.B. Toloczko, F.A. Garner, S.A. Maloy, Irradiation creep and density changes observed in MA957 pressurized tubes irradiated to doses of 40–110 dpa at 400–750 °C in FFTF, J. Nucl. Mat. 428 (2012)170-175.

DOI: 10.1016/j.jnucmat.2012.04.005

Google Scholar