[1]
D. R. Olander, Fundamental aspects of nuclear reactor fuel elements, Technical Information Center, Office of Public Affairs, Energy Research and Development Administration, (1976).
Google Scholar
[2]
W. J. Weber, Models and mechanisms of irradiation-induced amorphization in ceramics, Nucl. Instrum. Methods Phys. Res., Sect. B 166-167 (2000) 98-106.
Google Scholar
[3]
M. Lang, F. X. Zhang, J. M. Zhang, J. W. Wang, J. Lian, W. J. Weber, B. Schuster, C. Trautmann, R. Neumann and R. C. Ewing, Review of A2B2O7 pyrochlore response to irradiation and pressure, Nucl. Instrum. Methods Phys. Res., Sect. B 268 (2010).
DOI: 10.1016/j.nimb.2010.05.016
Google Scholar
[4]
G. Sattonnay, L. Thomé, N. Sellami, I. Monnet, C. Grygiel, C. Legros and R. Tetot, Experimental approach and atomistic simulations to investigate the radiation tolerance of complex oxides: Application to the amorphization of pyrochlores, Nucl. Instrum. Methods Phys. Res., Sect. B 326 (2014).
DOI: 10.1016/j.nimb.2013.09.029
Google Scholar
[5]
A. Chartier, G. Catillon and J. -P. Crocombette, Key role of the cation interstitial structure in the radiation resistance of pyrochlores, Phys. Rev. Lett. 102 (2009) 155503.
DOI: 10.1103/physrevlett.102.155503
Google Scholar
[6]
F. X. Zhang, J. W. Wang, J. Lian, M. K. Lang, U. Becker and R. C. Ewing, Phase stability and pressure dependence of defect formation in Gd2Ti2O7 and Gd2Zr2O7 pyrochlores, Phys. Rev. Lett. 100 (2008) 045503.
Google Scholar
[7]
R. Devanathan, W. J. Weber and J. D. Gale, Radiation tolerance of ceramics–insights from atomistic simulation of damage accumulation in pyrochlores, Energy Environ. Sci. 3 (2010) 1551-1559.
DOI: 10.1039/c0ee00066c
Google Scholar
[8]
B. P. Uberuaga, D. A. Andersson and C. R. Stanek, Defect behavior in oxides: Insights from modern atomistic simulation methods, Curr. Opin. Solid State Mater. Sci. 17 (2013) 249-256.
DOI: 10.1016/j.cossms.2013.07.003
Google Scholar
[9]
D. Simeone, J. M. Costantini, L. Luneville, L. Desgranges, P. Trocellier and P. Garcia, Characterization of radiation damage in ceramics: Old challenge new issues?, J. Mater. Res. 30 (2015) 1495-1515.
DOI: 10.1557/jmr.2015.77
Google Scholar
[10]
Y. W. Zhang, R. Sachan, O. H. Pakarinen, M. F. Chisholm, P. Liu, H. Z. Xue and W. J. Weber, Ionization-induced annealing of pre-existing defects in silicon carbide, Nat. Commun. 6 (2015) 8049.
DOI: 10.1038/ncomms9049
Google Scholar
[11]
J. Shamblin, M. Feygenson, J. Neuefeind, C. L. Tracy, F. X. Zhang, S. Finkeldei, D. Bosbach, H. D. Zhou, R. C. Ewing and M. Lang, Probing disorder in isometric pyrochlore and related complex oxides, Nat. Mater. 15 (2016) 507-511.
DOI: 10.1038/nmat4581
Google Scholar
[12]
K. Trachenko, Understanding resistance to amorphization by radiation damage, J. Phys.: Condens. Matter 16 (2004) R1491-R1515.
DOI: 10.1088/0953-8984/16/49/r03
Google Scholar
[13]
K. E. Sickafus, R. W. Grimes, J. A. Valdez, A. Cleave, M. Tang, M. Ishimaru, S. M. Corish, C. R. Stanek and B. P. Uberuaga, Radiation-induced amorphization resistance and radiation tolerance in structurally related oxides, Nat. Mater. 6 (2007).
DOI: 10.1038/nmat1842
Google Scholar
[14]
K. E. Sickafus, L. Minervini, R. W. Grimes, J. A. Valdez, M. Ishimaru, F. Li, K. J. McClellan and T. Hartmann, Radiation tolerance of complex oxides, Science 289 (2000) 748-751.
DOI: 10.1126/science.289.5480.748
Google Scholar
[15]
B. P. Uberuaga, D. Bacorisen, R. Smith, J. A. Ball, R. W. Grimes, A. F. Voter and K. E. Sickafus, Defect kinetics in spinels: Long-time simulations of MgAl2O4, MgGa2O4, MgIn2O4, Phys. Rev. B 75 (2007) 104116.
DOI: 10.1016/j.solidstatesciences.2007.04.005
Google Scholar
[16]
Y. W. Zhang, M. Ishimaru, T. Varga, T. Oda, C. Hardiman, H. Z. Xue, Y. Katoh, S. Shannon and W. J. Weber, Nanoscale engineering of radiation tolerant silicon carbide, Phys. Chem. Chem. Phys. 14 (2012) 13429-13436.
DOI: 10.1039/c2cp42342a
Google Scholar
[17]
X. -M. Bai, A. F. Voter, R. G. Hoagland, M. Nastasi and B. P. Uberuaga, Efficient annealing of radiation damage near grain boundaries via interstitial emission, Science 327 (2010) 1631-1634.
DOI: 10.1126/science.1183723
Google Scholar
[18]
J. M. Zhang, J. Lian, A. F. Fuentes, F. X. Zhang, M. Lang, F. Y. Lu and R. C. Ewing, Enhanced radiation resistance of nanocrystalline pyrochlore Gd2(Ti0. 65Zr0. 35)2O7, Appl. Phys. Lett. 94 (2009) 243110.
DOI: 10.1063/1.3155855
Google Scholar
[19]
B. P. Uberuaga, M. Tang, C. Jiang, J. A. Valdez, R. Smith, Y. Wang and K. E. Sickafus, Opposite correlations between cation disordering and amorphization resistance in spinels versus pyrochlores, Nat. Commun. 6 (2015) 8750.
DOI: 10.1038/ncomms9750
Google Scholar
[20]
M. T. Hutchings, K. Clausen, M. H. Dickens, W. Hayes, J. K. Kjems, P. G. Schnabel and C. Smith, Investigation of thermally induced anion disorder in fluorites using neutron scattering techniques, J. Phys. C: Solid State Phys. 17 (1984) 3903-3940.
DOI: 10.1088/0022-3719/17/22/011
Google Scholar
[21]
K. Clausen, W. Hayes, J. E. Macdonald, R. Osborn and M. T. Hutchings, Observation of oxygen Frenkel disorder in uranium dioxide above 2000 K by use of neutron-scattering techniques, Phys. Rev. Lett. 52 (1984) 1238-1241.
DOI: 10.1103/physrevlett.52.1238
Google Scholar
[22]
M. T. Hutchings, High-temperature studies of UO2 and ThO2 using neutron scattering techniques, J. Chem. Soc., Faraday Trans. 2 83 (1987) 1083-1103.
DOI: 10.1039/f29878301083
Google Scholar
[23]
H. Matzke, A. Turos and G. Linker, Polygonization of single crystals of the fluorite-type oxide UO2 due to high dose ion implantation, Nucl. Instrum. Methods Phys. Res., Sect. B 91 (1994) 294-300.
DOI: 10.1016/0168-583x(94)96234-0
Google Scholar
[24]
P. M. Martin, E. Vathonne, G. Carlot, R. Delorme, C. Sabathier, M. Freyss, P. Garcia, M. Bertolus, P. Glatzel and O. Proux, Behavior of fission gases in nuclear fuel: XAS characterization of Kr in UO2, J. Nucl. Mater. 466 (2015) 379-392.
DOI: 10.1016/j.jnucmat.2015.08.019
Google Scholar
[25]
J. Noirot, L. Desgranges and J. Lamontagne, Detailed characterisations of high burn-up structures in oxide fuels, J. Nucl. Mater. 372 (2008) 318-339.
DOI: 10.1016/j.jnucmat.2007.04.037
Google Scholar
[26]
T. Sonoda, M. Kinoshita, I. L. F. Ray, T. Wiss, H. Thiele, D. Pellottiero, V. V. Rondinella and H. Matzke, Transmission electron microscopy observation on irradiation-induced microstructural evolution in high burn-up UO2 disk fuel, Nucl. Instrum. Methods Phys. Res., Sect. B 191 (2002).
DOI: 10.1016/s0168-583x(02)00622-5
Google Scholar
[27]
H. Matzke and J. L. Whitton, Ion-bombardment-induced radiation damage in some ceramics and ionic crystals - Determined by electron diffraction and gas release measurements, Can. J. Phys. 44 (1966) 995-1010.
DOI: 10.1139/p66-083
Google Scholar
[28]
L. Van Brutzel, A. Chartier and J. P. Crocombette, Basic mechanisms of Frenkel pair recombinations in UO2 fluorite structure calculated by molecular dynamics simulations, Phys. Rev. B 78 (2008) 024111.
DOI: 10.1103/physrevb.78.024111
Google Scholar
[29]
H. M. Naguib and R. Kelly, Criteria for bombardment-induced structural changes in non-metallic solids, Radiation Effects 25 (1975) 1-12.
DOI: 10.1080/00337577508242047
Google Scholar
[30]
L. Desgranges, G. Baldinozzi, P. Ruello and C. Petot, How polarons can enhance UO2 irradiation resistance?, Nucl. Instrum. Methods Phys. Res., Sect. B 277 (2012) 109-111.
DOI: 10.1016/j.nimb.2011.12.046
Google Scholar
[31]
L. Desgranges, G. Baldinozzi, P. Ruello and C. Petot, Is UO2 irradiation resistance due to its unusual high temperature behaviour?, J. Nucl. Mater. 420 (2012) 334-337.
DOI: 10.1016/j.jnucmat.2011.10.003
Google Scholar
[32]
A. Annamareddy and J. Eapen, Disordering and dynamic self-organization in stoichiometric UO2 at high temperatures, J. Nucl. Mater. 483 (2017) 132-141.
DOI: 10.1016/j.jnucmat.2016.10.042
Google Scholar
[33]
J. Ralph and G. J. Hyland, Empirical confirmation of a Bredig transition in UO2, J. Nucl. Mater. 132 (1985) 76-79.
DOI: 10.1016/0022-3115(85)90397-6
Google Scholar
[34]
V. A. Annamareddy, P. K. Nandi, X. Mei and J. Eapen, Waxing and waning of dynamical heterogeneity in the superionic state, Phys. Rev. E 89 (2014) 010301.
DOI: 10.1103/physreve.89.010301
Google Scholar
[35]
A. Annamareddy and J. Eapen, Mobility propagation and dynamic facilitation in superionic conductors, J. Chem. Phys. 143 (2015) 194502.
DOI: 10.1063/1.4933209
Google Scholar
[36]
A. Annamareddy and J. Eapen, Low dimensional string-like relaxation underpins superionic conduction in fluorites and related structures, Sci. Rep. 7 (2017) 44149.
DOI: 10.1038/srep44149
Google Scholar
[37]
B. T. M. Willis, Positions of the oxygen atoms in UO2. 13, Nature 197 (1963) 755-756.
Google Scholar
[38]
J. Eapen and A. Annamareddy, Entropic crossovers in superionic fluorites from specific heat, Ionics 23 (2017) 1043-1047.
DOI: 10.1007/s11581-017-2007-z
Google Scholar
[39]
A. S. Keys, A. R. Abate, S. C. Glotzer and D. J. Durian, Measurement of growing dynamical length scales and prediction of the jamming transition in a granular material, Nat. Phys. 3 (2007) 260-264.
DOI: 10.1038/nphys572
Google Scholar
[40]
R. Devanathan, J. Yu and W. J. Weber, Energetic recoils in UO2 simulated using five different potentials, J. Chem. Phys. 130 (2009) 174502.
DOI: 10.1063/1.3125967
Google Scholar
[41]
S. A. Taller and X. -M. Bai, Assessment of structures and stabilities of defect clusters and surface energies predicted by nine interatomic potentials for UO2, J. Nucl. Mater. 443 (2013) 84-98.
DOI: 10.1016/j.jnucmat.2013.06.038
Google Scholar
[42]
P. C. M. Fossati, L. Van Brutzel, A. Chartier and J. -P. Crocombette, Simulation of uranium dioxide polymorphs and their phase transitions, Phys. Rev. B 88 (2013) 214112.
DOI: 10.1103/physrevb.88.214112
Google Scholar
[43]
Y. Zhang, P. C. Millett, M. R. Tonks, X. -M. Bai and S. B. Biner, Molecular dynamics simulations of intergranular fracture in UO2 with nine empirical interatomic potentials, J. Nucl. Mater. 452 (2014) 296-303.
DOI: 10.1016/j.jnucmat.2014.05.034
Google Scholar
[44]
M. W. D. Cooper, M. J. D. Rushton and R. W. Grimes, A many-body potential approach to modelling the thermomechanical properties of actinide oxides, J. Phys.: Condens. Matter 26 (2014) 105401.
DOI: 10.1088/0953-8984/26/10/105401
Google Scholar
[45]
M. W. D. Cooper, S. T. Murphy, P. C. M. Fossati, M. J. D. Rushton and R. W. Grimes, Thermophysical and anion diffusion properties of (Ux, Th1-x)O2, Proc. Royal Soc. A 470 (2014).
Google Scholar
[46]
S. I. Potashnikov, A. S. Boyarchenkov, K. A. Nekrasov and A. Y. Kupryazhkin, High-precision molecular dynamics simulation of UO2–PuO2: Pair potentials comparison in UO2, Journal of Nuclear Materials 419 (2011) 217-225.
DOI: 10.1016/j.jnucmat.2011.08.033
Google Scholar
[47]
E. Yakub, C. Ronchi and D. Staicu, Molecular dynamics simulation of premelting and melting phase transitions in stoichiometric uranium dioxide, J. Chem. Phys. 127 (2007) 094508-094511.
DOI: 10.1063/1.2764484
Google Scholar
[48]
C. B. Basak, A. K. Sengupta and H. S. Kamath, Classical molecular dynamics simulation of UO2 to predict thermophysical properties, J. Alloys Comp. 360 (2003) 210-216.
DOI: 10.1016/s0925-8388(03)00350-5
Google Scholar
[49]
D. Wolf, P. Keblinski, S. R. Phillpot and J. Eggebrecht, Exact method for the simulation of Coulombic systems by spherically truncated, pairwise r-1 summation, J. Chem. Phys. 110 (1999) 8254-8282.
DOI: 10.1063/1.478738
Google Scholar
[50]
A. Dent, P. A. Madden and M. Wilson, Simulation of CaF2 in the superionic state: comparison of an empirical and realistic potential, Solid State Ionics 167 (2004) 73-81.
DOI: 10.1016/j.ssi.2004.01.002
Google Scholar
[51]
J. F. Ziegler, J. P. Biersack and U. Littmark, The stopping and range of ions in solids, Pergamon, (1985).
Google Scholar
[52]
R. Devanathan, L. R. Corrales, W. J. Weber, A. Chartier and C. Meis, Molecular dynamics simulation of disordered zircon, Phys. Rev. B 69 (2004) 064115.
DOI: 10.1103/physrevb.69.064115
Google Scholar
[53]
R. C. Ewing, Displaced by radiation, Nature 445 (2007) 161-162.
Google Scholar
[54]
J. L. Wormald and A. I. Hawari, Examination of the impact of electron-phonon coupling on fission enhanced diffusion in uranium dioxide using classical molecular dynamics, J. Mater. Res. 30 (2015) 1485-1494.
DOI: 10.1557/jmr.2014.405
Google Scholar
[55]
L. Van Brutzel, J. M. Delaye, D. Ghaleb and M. Rarivomanantsoa, Molecular dynamics studies of displacement cascades in the uranium dioxide matrix, Philos. Mag. 83 (2003) 4083-4101.
DOI: 10.1080/14786430310001616081
Google Scholar
[56]
J. P. Boon and S. Yip, Molecular hydrodynamics, Dover Publications, (1991).
Google Scholar
[57]
W. Kob and H. C. Andersen, Testing mode-coupling theory for a supercooled binary Lennard-Jones mixture: The van Hove correlation function, Phys. Rev. E 51 (1995) 4626-4641.
DOI: 10.1103/physreve.51.4626
Google Scholar
[58]
O. Hochrein and D. Zahn, Atomic mechanisms of superionic conductivity in fluorite, Solid State Ionics 180 (2009) 116-119.
DOI: 10.1016/j.ssi.2008.11.011
Google Scholar
[59]
A. Stukowski, Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool, Modell. Simul. Mater. Sci. Eng. 18 (2010) 015012.
DOI: 10.1088/0965-0393/18/1/015012
Google Scholar
[60]
J. T. Buchan, M. Robinson, H. J. Christie, D. L. Roach, D. K. Ross and N. A. Marks, Molecular dynamics simulation of radiation damage cascades in diamond, J . Appl. Phys. 117 (2015) 245901.
DOI: 10.1063/1.4932636
Google Scholar