Fast Anion Defect Recovery through Superionic-Type Hopping Displacements in UO2 Following Radiation

Article Preview

Abstract:

UO2 transforms into a superionic conductor at temperatures in excess of 2000 K with oxygen ions becoming mobile and exhibiting collective diffusive dynamics. While the response of UO2 to irradiation is of current interest, the possible impact of superionic characteristics on defect dynamics and recovery following radiation has not been explored yet. In the current work, we use atomistic simulations to elucidate the short-time dynamical response of stoichiometric UO2 subjected to low energy radiation knocks. We observe that the oxygen ions exhibit a collective behavior that is characterized by frequent hopping across their native lattice sites and forming quasi-one-dimensional string-like structures, which are typical of the superionic state. Approximately, a quarter of the displaced oxygen ions dynamically recover through concerted string-like displacements. Our simulations thus suggest a plausible correlation between defect recovery of irradiated UO2 and the characteristic superionic hopping mechanism among the oxygen ions.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

43-56

Citation:

Online since:

May 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D. R. Olander, Fundamental aspects of nuclear reactor fuel elements, Technical Information Center, Office of Public Affairs, Energy Research and Development Administration, (1976).

Google Scholar

[2] W. J. Weber, Models and mechanisms of irradiation-induced amorphization in ceramics, Nucl. Instrum. Methods Phys. Res., Sect. B 166-167 (2000) 98-106.

Google Scholar

[3] M. Lang, F. X. Zhang, J. M. Zhang, J. W. Wang, J. Lian, W. J. Weber, B. Schuster, C. Trautmann, R. Neumann and R. C. Ewing, Review of A2B2O7 pyrochlore response to irradiation and pressure, Nucl. Instrum. Methods Phys. Res., Sect. B 268 (2010).

DOI: 10.1016/j.nimb.2010.05.016

Google Scholar

[4] G. Sattonnay, L. Thomé, N. Sellami, I. Monnet, C. Grygiel, C. Legros and R. Tetot, Experimental approach and atomistic simulations to investigate the radiation tolerance of complex oxides: Application to the amorphization of pyrochlores, Nucl. Instrum. Methods Phys. Res., Sect. B 326 (2014).

DOI: 10.1016/j.nimb.2013.09.029

Google Scholar

[5] A. Chartier, G. Catillon and J. -P. Crocombette, Key role of the cation interstitial structure in the radiation resistance of pyrochlores, Phys. Rev. Lett. 102 (2009) 155503.

DOI: 10.1103/physrevlett.102.155503

Google Scholar

[6] F. X. Zhang, J. W. Wang, J. Lian, M. K. Lang, U. Becker and R. C. Ewing, Phase stability and pressure dependence of defect formation in Gd2Ti2O7 and Gd2Zr2O7 pyrochlores, Phys. Rev. Lett. 100 (2008) 045503.

Google Scholar

[7] R. Devanathan, W. J. Weber and J. D. Gale, Radiation tolerance of ceramics–insights from atomistic simulation of damage accumulation in pyrochlores, Energy Environ. Sci. 3 (2010) 1551-1559.

DOI: 10.1039/c0ee00066c

Google Scholar

[8] B. P. Uberuaga, D. A. Andersson and C. R. Stanek, Defect behavior in oxides: Insights from modern atomistic simulation methods, Curr. Opin. Solid State Mater. Sci. 17 (2013) 249-256.

DOI: 10.1016/j.cossms.2013.07.003

Google Scholar

[9] D. Simeone, J. M. Costantini, L. Luneville, L. Desgranges, P. Trocellier and P. Garcia, Characterization of radiation damage in ceramics: Old challenge new issues?, J. Mater. Res. 30 (2015) 1495-1515.

DOI: 10.1557/jmr.2015.77

Google Scholar

[10] Y. W. Zhang, R. Sachan, O. H. Pakarinen, M. F. Chisholm, P. Liu, H. Z. Xue and W. J. Weber, Ionization-induced annealing of pre-existing defects in silicon carbide, Nat. Commun. 6 (2015) 8049.

DOI: 10.1038/ncomms9049

Google Scholar

[11] J. Shamblin, M. Feygenson, J. Neuefeind, C. L. Tracy, F. X. Zhang, S. Finkeldei, D. Bosbach, H. D. Zhou, R. C. Ewing and M. Lang, Probing disorder in isometric pyrochlore and related complex oxides, Nat. Mater. 15 (2016) 507-511.

DOI: 10.1038/nmat4581

Google Scholar

[12] K. Trachenko, Understanding resistance to amorphization by radiation damage, J. Phys.: Condens. Matter 16 (2004) R1491-R1515.

DOI: 10.1088/0953-8984/16/49/r03

Google Scholar

[13] K. E. Sickafus, R. W. Grimes, J. A. Valdez, A. Cleave, M. Tang, M. Ishimaru, S. M. Corish, C. R. Stanek and B. P. Uberuaga, Radiation-induced amorphization resistance and radiation tolerance in structurally related oxides, Nat. Mater. 6 (2007).

DOI: 10.1038/nmat1842

Google Scholar

[14] K. E. Sickafus, L. Minervini, R. W. Grimes, J. A. Valdez, M. Ishimaru, F. Li, K. J. McClellan and T. Hartmann, Radiation tolerance of complex oxides, Science 289 (2000) 748-751.

DOI: 10.1126/science.289.5480.748

Google Scholar

[15] B. P. Uberuaga, D. Bacorisen, R. Smith, J. A. Ball, R. W. Grimes, A. F. Voter and K. E. Sickafus, Defect kinetics in spinels: Long-time simulations of MgAl2O4, MgGa2O4, MgIn2O4, Phys. Rev. B 75 (2007) 104116.

DOI: 10.1016/j.solidstatesciences.2007.04.005

Google Scholar

[16] Y. W. Zhang, M. Ishimaru, T. Varga, T. Oda, C. Hardiman, H. Z. Xue, Y. Katoh, S. Shannon and W. J. Weber, Nanoscale engineering of radiation tolerant silicon carbide, Phys. Chem. Chem. Phys. 14 (2012) 13429-13436.

DOI: 10.1039/c2cp42342a

Google Scholar

[17] X. -M. Bai, A. F. Voter, R. G. Hoagland, M. Nastasi and B. P. Uberuaga, Efficient annealing of radiation damage near grain boundaries via interstitial emission, Science 327 (2010) 1631-1634.

DOI: 10.1126/science.1183723

Google Scholar

[18] J. M. Zhang, J. Lian, A. F. Fuentes, F. X. Zhang, M. Lang, F. Y. Lu and R. C. Ewing, Enhanced radiation resistance of nanocrystalline pyrochlore Gd2(Ti0. 65Zr0. 35)2O7, Appl. Phys. Lett. 94 (2009) 243110.

DOI: 10.1063/1.3155855

Google Scholar

[19] B. P. Uberuaga, M. Tang, C. Jiang, J. A. Valdez, R. Smith, Y. Wang and K. E. Sickafus, Opposite correlations between cation disordering and amorphization resistance in spinels versus pyrochlores, Nat. Commun. 6 (2015) 8750.

DOI: 10.1038/ncomms9750

Google Scholar

[20] M. T. Hutchings, K. Clausen, M. H. Dickens, W. Hayes, J. K. Kjems, P. G. Schnabel and C. Smith, Investigation of thermally induced anion disorder in fluorites using neutron scattering techniques, J. Phys. C: Solid State Phys. 17 (1984) 3903-3940.

DOI: 10.1088/0022-3719/17/22/011

Google Scholar

[21] K. Clausen, W. Hayes, J. E. Macdonald, R. Osborn and M. T. Hutchings, Observation of oxygen Frenkel disorder in uranium dioxide above 2000 K by use of neutron-scattering techniques, Phys. Rev. Lett. 52 (1984) 1238-1241.

DOI: 10.1103/physrevlett.52.1238

Google Scholar

[22] M. T. Hutchings, High-temperature studies of UO2 and ThO2 using neutron scattering techniques, J. Chem. Soc., Faraday Trans. 2 83 (1987) 1083-1103.

DOI: 10.1039/f29878301083

Google Scholar

[23] H. Matzke, A. Turos and G. Linker, Polygonization of single crystals of the fluorite-type oxide UO2 due to high dose ion implantation, Nucl. Instrum. Methods Phys. Res., Sect. B 91 (1994) 294-300.

DOI: 10.1016/0168-583x(94)96234-0

Google Scholar

[24] P. M. Martin, E. Vathonne, G. Carlot, R. Delorme, C. Sabathier, M. Freyss, P. Garcia, M. Bertolus, P. Glatzel and O. Proux, Behavior of fission gases in nuclear fuel: XAS characterization of Kr in UO2, J. Nucl. Mater. 466 (2015) 379-392.

DOI: 10.1016/j.jnucmat.2015.08.019

Google Scholar

[25] J. Noirot, L. Desgranges and J. Lamontagne, Detailed characterisations of high burn-up structures in oxide fuels, J. Nucl. Mater. 372 (2008) 318-339.

DOI: 10.1016/j.jnucmat.2007.04.037

Google Scholar

[26] T. Sonoda, M. Kinoshita, I. L. F. Ray, T. Wiss, H. Thiele, D. Pellottiero, V. V. Rondinella and H. Matzke, Transmission electron microscopy observation on irradiation-induced microstructural evolution in high burn-up UO2 disk fuel, Nucl. Instrum. Methods Phys. Res., Sect. B 191 (2002).

DOI: 10.1016/s0168-583x(02)00622-5

Google Scholar

[27] H. Matzke and J. L. Whitton, Ion-bombardment-induced radiation damage in some ceramics and ionic crystals - Determined by electron diffraction and gas release measurements, Can. J. Phys. 44 (1966) 995-1010.

DOI: 10.1139/p66-083

Google Scholar

[28] L. Van Brutzel, A. Chartier and J. P. Crocombette, Basic mechanisms of Frenkel pair recombinations in UO2 fluorite structure calculated by molecular dynamics simulations, Phys. Rev. B 78 (2008) 024111.

DOI: 10.1103/physrevb.78.024111

Google Scholar

[29] H. M. Naguib and R. Kelly, Criteria for bombardment-induced structural changes in non-metallic solids, Radiation Effects 25 (1975) 1-12.

DOI: 10.1080/00337577508242047

Google Scholar

[30] L. Desgranges, G. Baldinozzi, P. Ruello and C. Petot, How polarons can enhance UO2 irradiation resistance?, Nucl. Instrum. Methods Phys. Res., Sect. B 277 (2012) 109-111.

DOI: 10.1016/j.nimb.2011.12.046

Google Scholar

[31] L. Desgranges, G. Baldinozzi, P. Ruello and C. Petot, Is UO2 irradiation resistance due to its unusual high temperature behaviour?, J. Nucl. Mater. 420 (2012) 334-337.

DOI: 10.1016/j.jnucmat.2011.10.003

Google Scholar

[32] A. Annamareddy and J. Eapen, Disordering and dynamic self-organization in stoichiometric UO2 at high temperatures, J. Nucl. Mater. 483 (2017) 132-141.

DOI: 10.1016/j.jnucmat.2016.10.042

Google Scholar

[33] J. Ralph and G. J. Hyland, Empirical confirmation of a Bredig transition in UO2, J. Nucl. Mater. 132 (1985) 76-79.

DOI: 10.1016/0022-3115(85)90397-6

Google Scholar

[34] V. A. Annamareddy, P. K. Nandi, X. Mei and J. Eapen, Waxing and waning of dynamical heterogeneity in the superionic state, Phys. Rev. E 89 (2014) 010301.

DOI: 10.1103/physreve.89.010301

Google Scholar

[35] A. Annamareddy and J. Eapen, Mobility propagation and dynamic facilitation in superionic conductors, J. Chem. Phys. 143 (2015) 194502.

DOI: 10.1063/1.4933209

Google Scholar

[36] A. Annamareddy and J. Eapen, Low dimensional string-like relaxation underpins superionic conduction in fluorites and related structures, Sci. Rep. 7 (2017) 44149.

DOI: 10.1038/srep44149

Google Scholar

[37] B. T. M. Willis, Positions of the oxygen atoms in UO2. 13, Nature 197 (1963) 755-756.

Google Scholar

[38] J. Eapen and A. Annamareddy, Entropic crossovers in superionic fluorites from specific heat, Ionics 23 (2017) 1043-1047.

DOI: 10.1007/s11581-017-2007-z

Google Scholar

[39] A. S. Keys, A. R. Abate, S. C. Glotzer and D. J. Durian, Measurement of growing dynamical length scales and prediction of the jamming transition in a granular material, Nat. Phys. 3 (2007) 260-264.

DOI: 10.1038/nphys572

Google Scholar

[40] R. Devanathan, J. Yu and W. J. Weber, Energetic recoils in UO2 simulated using five different potentials, J. Chem. Phys. 130 (2009) 174502.

DOI: 10.1063/1.3125967

Google Scholar

[41] S. A. Taller and X. -M. Bai, Assessment of structures and stabilities of defect clusters and surface energies predicted by nine interatomic potentials for UO2, J. Nucl. Mater. 443 (2013) 84-98.

DOI: 10.1016/j.jnucmat.2013.06.038

Google Scholar

[42] P. C. M. Fossati, L. Van Brutzel, A. Chartier and J. -P. Crocombette, Simulation of uranium dioxide polymorphs and their phase transitions, Phys. Rev. B 88 (2013) 214112.

DOI: 10.1103/physrevb.88.214112

Google Scholar

[43] Y. Zhang, P. C. Millett, M. R. Tonks, X. -M. Bai and S. B. Biner, Molecular dynamics simulations of intergranular fracture in UO2 with nine empirical interatomic potentials, J. Nucl. Mater. 452 (2014) 296-303.

DOI: 10.1016/j.jnucmat.2014.05.034

Google Scholar

[44] M. W. D. Cooper, M. J. D. Rushton and R. W. Grimes, A many-body potential approach to modelling the thermomechanical properties of actinide oxides, J. Phys.: Condens. Matter 26 (2014) 105401.

DOI: 10.1088/0953-8984/26/10/105401

Google Scholar

[45] M. W. D. Cooper, S. T. Murphy, P. C. M. Fossati, M. J. D. Rushton and R. W. Grimes, Thermophysical and anion diffusion properties of (Ux, Th1-x)O2, Proc. Royal Soc. A 470 (2014).

Google Scholar

[46] S. I. Potashnikov, A. S. Boyarchenkov, K. A. Nekrasov and A. Y. Kupryazhkin, High-precision molecular dynamics simulation of UO2–PuO2: Pair potentials comparison in UO2, Journal of Nuclear Materials 419 (2011) 217-225.

DOI: 10.1016/j.jnucmat.2011.08.033

Google Scholar

[47] E. Yakub, C. Ronchi and D. Staicu, Molecular dynamics simulation of premelting and melting phase transitions in stoichiometric uranium dioxide, J. Chem. Phys. 127 (2007) 094508-094511.

DOI: 10.1063/1.2764484

Google Scholar

[48] C. B. Basak, A. K. Sengupta and H. S. Kamath, Classical molecular dynamics simulation of UO2 to predict thermophysical properties, J. Alloys Comp. 360 (2003) 210-216.

DOI: 10.1016/s0925-8388(03)00350-5

Google Scholar

[49] D. Wolf, P. Keblinski, S. R. Phillpot and J. Eggebrecht, Exact method for the simulation of Coulombic systems by spherically truncated, pairwise r-1 summation, J. Chem. Phys. 110 (1999) 8254-8282.

DOI: 10.1063/1.478738

Google Scholar

[50] A. Dent, P. A. Madden and M. Wilson, Simulation of CaF2 in the superionic state: comparison of an empirical and realistic potential, Solid State Ionics 167 (2004) 73-81.

DOI: 10.1016/j.ssi.2004.01.002

Google Scholar

[51] J. F. Ziegler, J. P. Biersack and U. Littmark, The stopping and range of ions in solids, Pergamon, (1985).

Google Scholar

[52] R. Devanathan, L. R. Corrales, W. J. Weber, A. Chartier and C. Meis, Molecular dynamics simulation of disordered zircon, Phys. Rev. B 69 (2004) 064115.

DOI: 10.1103/physrevb.69.064115

Google Scholar

[53] R. C. Ewing, Displaced by radiation, Nature 445 (2007) 161-162.

Google Scholar

[54] J. L. Wormald and A. I. Hawari, Examination of the impact of electron-phonon coupling on fission enhanced diffusion in uranium dioxide using classical molecular dynamics, J. Mater. Res. 30 (2015) 1485-1494.

DOI: 10.1557/jmr.2014.405

Google Scholar

[55] L. Van Brutzel, J. M. Delaye, D. Ghaleb and M. Rarivomanantsoa, Molecular dynamics studies of displacement cascades in the uranium dioxide matrix, Philos. Mag. 83 (2003) 4083-4101.

DOI: 10.1080/14786430310001616081

Google Scholar

[56] J. P. Boon and S. Yip, Molecular hydrodynamics, Dover Publications, (1991).

Google Scholar

[57] W. Kob and H. C. Andersen, Testing mode-coupling theory for a supercooled binary Lennard-Jones mixture: The van Hove correlation function, Phys. Rev. E 51 (1995) 4626-4641.

DOI: 10.1103/physreve.51.4626

Google Scholar

[58] O. Hochrein and D. Zahn, Atomic mechanisms of superionic conductivity in fluorite, Solid State Ionics 180 (2009) 116-119.

DOI: 10.1016/j.ssi.2008.11.011

Google Scholar

[59] A. Stukowski, Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool, Modell. Simul. Mater. Sci. Eng. 18 (2010) 015012.

DOI: 10.1088/0965-0393/18/1/015012

Google Scholar

[60] J. T. Buchan, M. Robinson, H. J. Christie, D. L. Roach, D. K. Ross and N. A. Marks, Molecular dynamics simulation of radiation damage cascades in diamond, J . Appl. Phys. 117 (2015) 245901.

DOI: 10.1063/1.4932636

Google Scholar