Oxygen Chemical Diffusion Coefficients of (U, Pu)O2-x

Article Preview

Abstract:

The oxygen chemical diffusion coefficient in (U, Pu)O2-x was determined by thermo-gravimetry as functions of the Pu content, oxygen-to-metal ratio and temperature. The surface reaction was considered in the diffusion coefficient determination. The activation energy for the chemical diffusion coefficient was 60 kJ/mol and 65 kJ/mol, respectively, in (U0.8Pu0.2)O2-x and (U0.7Pu0.3)O2-x.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

84-90

Citation:

Online since:

May 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C. Sari, U. Benedict, H. Blank, A study of the ternary system UO2-PuO2-Pu2O3, J. Nucl. Mater. 35 (1970) 276-277.

Google Scholar

[2] T. L. Markin, R. S. Street, The uranium-plutonium-oxygen ternary phase diagram, J. Inorg. Nucl. Chem. 29 (1967) 2265-2280.

DOI: 10.1016/0022-1902(67)80281-1

Google Scholar

[3] M. Kato, K. Konashi, Lattice parameter of (U, Pu, Am, Np)O2-x, J. Nucl. Mater. 385 (2009) 117-121.

DOI: 10.1016/j.jnucmat.2008.09.037

Google Scholar

[4] K. Morimoto, M. Kato, M. Ogasawara, M. Kashimura, Thermal conductivities of hypostoichiometric (U, Pu, Am)O2-x, J. Nucl. Mater. 374 (2008) 378-385.

DOI: 10.1016/j.jnucmat.2007.09.003

Google Scholar

[5] M. Kato, K. Takeuchi, T. Uchida, T. Sunaoshi, K. Konashi, Oxygen potential of (U0. 88Pu0. 12)O2±x and (U0. 7Pu0. 3)O2±x at high temperatures of 1673-1873 K, J. Nucl. Mater. 414 (2011) 120-125.

DOI: 10.1016/j.jnucmat.2011.01.042

Google Scholar

[6] A. S. Bayoğlu, R. Lorenzelli, Oxygen diffusion in fcc fluorite type nonstoichiometric nuclear oxides MO2±x, Solid State Ionics 12 (1984) 53-66.

DOI: 10.1016/0167-2738(84)90130-9

Google Scholar

[7] C. Sari, Oxygen chemical diffusion coefficient of uranium-plutonium oxides, J. Nucl. Mater. 78 (1978) 425-426.

DOI: 10.1016/0022-3115(78)90465-8

Google Scholar

[8] M. Kato, K. Morimoto, T. Tamura, T. Sunaoshi, K. Konashi, S. Aono, M. Kashimura, Oxygen chemical diffusion in hypo-stoichiometric MOX, J. Nucl. Mater. 389 (2009) 416-419.

DOI: 10.1016/j.jnucmat.2009.02.018

Google Scholar

[9] K. Asakura Y. Kato H. Furuya, Characteristics and sinterability of MOX powder prepared by the microwave heating denitration method, Nucl. Technol. 162 (2008) 265-275.

DOI: 10.13182/nt08-a3955

Google Scholar

[10] J. Crank, The Mathematics of Diffusion, Second Ed., Oxford University Press, (1975).

Google Scholar

[11] M. Kato, K. Konashi, N. Nakae, Analysis of oxygen potential of (U0. 7Pu0. 3)O2±x and (U0. 8Pu0. 2)O2±x based on point defect chemistry, J. Nucl. Mater. 389 (2009) 164-169.

DOI: 10.1016/j.jnucmat.2009.01.023

Google Scholar

[12] H. Matzke, Atomic transport properties in UO2 and mixed oxides (U, Pu)O2, J. Chem. Soc., Faraday Trans. 83 (1987) 1121-1142.

DOI: 10.1039/f29878301121

Google Scholar

[13] M. Kato, Oxygen Potentials and Defect Chemistry in Nonstoichiometric (U, Pu)O2, In: Stoichiometry and Materials Science - When Numbers Matter, A. Innocenti and N. Kamarulzaman, Eds., InTech, Chapter 8 (2012).

DOI: 10.5772/33672

Google Scholar

[14] M. Kato, T. Uchida, T. Sunaoshi, Measurement of oxygen chemical diffusion in PuO2 and analysis oxygen diffusion in PuO2 and (Pu, U)O2-x, Phys. Status Solidi C 10 (2013) 189-192.

DOI: 10.1002/pssc.201200454

Google Scholar

[15] M. Stan, P. Cristea, Defects and oxygen diffusion in PuO2-x, J. Nucl. Mater. 344 (2005) 213-218.

DOI: 10.1016/j.jnucmat.2005.04.044

Google Scholar

[16] M. Katsuki, S. Wang, K. Yasumoto, M. Dokiya, The oxygen transport in Gd-doped ceria, Solid State Ionics 154-155 (2002) 589-595.

DOI: 10.1016/s0167-2738(02)00500-3

Google Scholar