MFPR Model Parameters of the Athermal Irradiation-Induced Transport in Nuclear Fuels

Article Preview

Abstract:

Atomistic simulations of radiation impact due to collision cascades in oxide and nitride nuclear fuels are performed in this work using combination of Monte Carlo and molecular dynamics techniques. The key parameters of MFPR code models for the athermal self-diffusivity and irradiation-assisted fission product release from fuel are evaluated. The general solution of Olander's integro-differential equation for the knockout mechanism is developed, which allowed extension of the earlier approaches for the long-lived and stable nuclides.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

71-83

Citation:

Online since:

May 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M.S. Veshchunov, V.D. Ozrin, V.E. Shestak, et al, Development of mechanistic code MFPR for modelling fission product release from irradiated UO2 fuel, Nucl. Eng. Design 236 (2006) 179.

DOI: 10.1016/j.nucengdes.2005.08.006

Google Scholar

[2] M.S. Veshchunov, R. Dubourg, V.D. Ozrin, et al., Mechanistic modelling of urania fuel evolution and fission product migration during irradiation and heating, J. Nucl. Mater. 362 (2007) 327.

DOI: 10.1016/j.jnucmat.2007.01.081

Google Scholar

[3] A.V. Boldyrev, S. Yu. Chernov, A.P. Dolgodvorov et al., BERKUT – Best Estimate Code for Modelling of Fast Reactor Fuel Rod Behaviour under Normal and Accidental Conditions, Proc. Int. Conf. on Fast Reactors and Related Fuel Cycles (FR17), Paper IAEA-CN-245-363, Ekaterinburg, (2017).

Google Scholar

[4] M.S. Veshchunov, A.V. Boldyrev, A.V. Kuznetsov, et al., Development of the advanced mechanistic fuel performance and safety code using the multi-scale approach, Nucl. Eng. Design 295 (2015) 116.

DOI: 10.1016/j.nucengdes.2015.09.035

Google Scholar

[5] J.A. Turnbull, et al., The diffusion coefficients of gaseous and volatile species during the irradiation of uranium dioxide, J. Nucl. Mater. 107 (1982) 168–184.

DOI: 10.1016/0022-3115(82)90419-6

Google Scholar

[6] A. Höh, Hj. Matzke, Fission-enhanced self-diffusion of uranium in UO2 and UC, J. Nucl. Mater. 48 (1973) 157–164.

DOI: 10.1016/0022-3115(73)90150-5

Google Scholar

[7] G. Martin, S. Maillard, L. Van Brutzel, P. Garcia, B. Dorado, C. Valot, A molecular dynamics study of radiation induced diffusion in uranium dioxide, J. Nucl. Mater. 385 (2009) 351–357.

DOI: 10.1016/j.jnucmat.2008.12.010

Google Scholar

[8] J.L. Wormald, A.I. Hawari, Examination of the impact of electron–phonon coupling on fission enhanced diffusion in uranium dioxide using classical molecular dynamics, J. Mater. Res. 30 (2015) 1485–1494.

DOI: 10.1557/jmr.2014.405

Google Scholar

[9] M.W.D. Cooper, C.R. Stanek, J.A. Turnbull, B.P. Uberuaga, D.A. Andersson, Simulation of radiation driven fission gas diffusion in UO2, ThO2 and PuO2 ,J. Nucl. Mater. 481 (2016) 125–133.

DOI: 10.1016/j.jnucmat.2016.09.013

Google Scholar

[10] C. Wise, Recoil release of fission products from nuclear fuel, J. Nucl. Mater. 136 (1985) 30.

Google Scholar

[11] D.R. Olander, Fundamental Aspects of Nuclear Reactor Fuel Elements, TID-26711-Pl (1976), p.289–299.

Google Scholar

[12] B.J. Lewis, Fission product release from nuclear fuel by recoil and knockout, J. Nucl. Mater. 148 (1987) 28–42.

DOI: 10.1016/0022-3115(87)90515-0

Google Scholar

[13] G. H. Kinchin and R. S. Pease, The displacement of atoms in solids by radiation, Progr. Phys. 18 (1955) 1.

Google Scholar

[14] G. Nilsson, Ejection of uranium atoms from sintered UO2 by fission fragments in different gases and at different gas pressures, J. Nucl. Mater. 20 (1966) 215.

DOI: 10.1016/0022-3115(66)90010-9

Google Scholar

[15] J.F. Ziegler, SRIM – The stopping and range of ions in matter (2010), Nucl. Instrum. Methods Phys. Res. B 268 (2010) 1818–1823.

Google Scholar

[16] M.D. Rogers, Ejection of uranium atoms from sintered UO2 , J. Nucl. Mater. 22 (1967) 103.

Google Scholar

[17] S. Plimpton, Fast parallel algorithms for short-range molecular dynamics, J. Comp. Phys. 117 (1995) 1–19.

Google Scholar

[18] A.Y. Kuksin, S.V. Starikov, D.E. Smirnova, V.I. Tseplyaev, The diffusion of point defects in uranium mononitride: Combination of DFT and atomistic simulation with novel potential, J. Alloy. Comp. 658 (2016) 385–394.

DOI: 10.1016/j.jallcom.2015.10.223

Google Scholar

[19] E. Yakub, C. Ronchi, D. Staicu, Molecular dynamics simulation of premelting and melting phase transitions in stoichiometric uranium dioxide, J. Chem. Phys. 127 (2007) 094508.

DOI: 10.1063/1.2764484

Google Scholar

[20] J.F. Ziegler, J.P. Biersack, U. Littmark, The stopping and range of ions in solids, Pergamon, New York, (1985).

Google Scholar

[21] S.I. Potashnikov, A.S. Boyarchenkov, K.A. Nekrasov, A. Ya. Kupryazhkin, High-precision molecular dynamics simulation of UO2–PuO2: Pair potentials comparison in UO2, J. Nucl. Mater. 419 (2011) 217–225.

DOI: 10.1016/j.jnucmat.2011.08.033

Google Scholar