Friction Stir Processing Trials of SP-700 (Ti-4.5Al-3V-2Fe-2Mo) Titanium Alloy

Article Preview

Abstract:

Superplastic titanium alloy (SP-700 with nominal composition of Ti-4.5Al-3V-2Fe-2Mo) an alpha-beta alloy, with a beta-rich fine microstructure and excellent superplastic formability has wide applications in aerospace components, metal wood heads, tools, automotive components. However, very little information is available regarding friction stir processing (FSP) characteristics of this alloy. This study discusses the trials of FSP of this highly formable titanium alloy. Results are discussed in terms of hardness and temperature measurements and microstructural observations.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

349-354

Citation:

Online since:

July 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Ishikawa, A. Ogawa, K. Takahashi, K. Minakawa, C. Ouchi, Development of a New Titanium Alloy: SP-700, Proceedings of the Japanese Institute of Metals. 31, No. 6 (1992) 559-561.

DOI: 10.2320/materia1962.31.559

Google Scholar

[2] W. M. Thomas, E. D. Nicholas, J. C. Needham, M. G. Murch, P. Templesmith, C. J. Dawes, Improvements to Friction Welding, GB Patent Application No.9125978.8, December (1991).

Google Scholar

[3] R. S. Mishra, M.W. Mahoney, Friction Stir Welding and Processing, ASM International. USA. (2007) 95-101.

Google Scholar

[4] D. Storjohann, O.M. Barabash, S.S. Babu, S.A. David, P.S. Sklad, E.E. Bloom, Fusion and Friction Stir Welding of Aluminum-Metal-Matrix Composites, Metall. Mater. Trans. A 36A (2005) 3237-3247.

DOI: 10.1007/s11661-005-0093-4

Google Scholar

[5] K. Yamamura, and T. Nishihara, Friction Stir Welding of SiC Whisker Reinforced Aluminum Composites, proc. 17th Int. ISOPE. (2007) 3427-3431.

Google Scholar

[6] M Mahoney, R. S. Mishra, T. Nelson, J. Flintoff, R. Islamgaliev, Y. Hovansky, High Strain Rate, Thick Section Superplasticity Created via Friction Stir Processing, The Minerals, Metals & Materials Society. (2001) 183–194.

Google Scholar

[7] M. W. Mahoney, S. P. Lynch, Friction Stir Processing, (2006) Report OMB No. 0704-0188.

Google Scholar

[8] H. Mofidi, T. Nishihara, Effect of Friction Stir Processing on Superplastic Behavior of Zn–22Al Alloy, Proceedings of the 1st International Joint Symposium on Joining and Welding, Fujii, H (Ed.), Joining and Welding Institute, Osaka, Japan. (2013).

DOI: 10.1533/978-1-78242-164-1.383

Google Scholar

[9] H. M. Tabatabaei, T. Nishihara, Grain Refinement of Zn–22Al Superplastic Alloy Using Friction Stir Processing, International Journal of Offshore and Polar Engineering. 27 Issue 2 (2017) 204-209.

DOI: 10.17736/ijope.2017.oa15

Google Scholar

[10] M.Peel, A. Steuwer, M. Preuss, P. J. Withers, Microstructure, Mechanical Properties and Residual Stresses as a Function of Welding Speed in Aluminum AA5083, Friction Stir Welds. Acta Material. 51 (2003) 4791-4801.

DOI: 10.1016/s1359-6454(03)00319-7

Google Scholar

[11] F. Gratecap, G. Racineux, S. Marya, A Simple Methodology to Define Conical Tool Geometry and Welding Parameters in Friction Stir Welding, 7th International Friction StirWelding Symp TWI. (2008) Japan published on CD.

DOI: 10.1007/s12289-008-0370-z

Google Scholar

[12] A. Simar, Y. Brechet, B. de Meester, A. Denquin, T. Pardon, Microstructure, local and global mechanical properties of friction stir welds in aluminum alloy 6005A-T6, Mater. Sci. Eng., A. 486 no. 1-2 (2008) 85-95.

DOI: 10.1016/j.msea.2007.08.041

Google Scholar

[13] R.S Mishra, Friction Stir Processing for Superplasticity, Adv. Mater. Process. 162 No. 2 (2004) 45-47.

Google Scholar

[14] Ogawa, et al. (Eds.), SP-700 titanium alloy data sheets, United States (1993) Minerals, Metals and Materials Society.

Google Scholar