[1]
M. Ishikawa, A. Ogawa, K. Takahashi, K. Minakawa, C. Ouchi, Development of a New Titanium Alloy: SP-700, Proceedings of the Japanese Institute of Metals. 31, No. 6 (1992) 559-561.
DOI: 10.2320/materia1962.31.559
Google Scholar
[2]
W. M. Thomas, E. D. Nicholas, J. C. Needham, M. G. Murch, P. Templesmith, C. J. Dawes, Improvements to Friction Welding, GB Patent Application No.9125978.8, December (1991).
Google Scholar
[3]
R. S. Mishra, M.W. Mahoney, Friction Stir Welding and Processing, ASM International. USA. (2007) 95-101.
Google Scholar
[4]
D. Storjohann, O.M. Barabash, S.S. Babu, S.A. David, P.S. Sklad, E.E. Bloom, Fusion and Friction Stir Welding of Aluminum-Metal-Matrix Composites, Metall. Mater. Trans. A 36A (2005) 3237-3247.
DOI: 10.1007/s11661-005-0093-4
Google Scholar
[5]
K. Yamamura, and T. Nishihara, Friction Stir Welding of SiC Whisker Reinforced Aluminum Composites, proc. 17th Int. ISOPE. (2007) 3427-3431.
Google Scholar
[6]
M Mahoney, R. S. Mishra, T. Nelson, J. Flintoff, R. Islamgaliev, Y. Hovansky, High Strain Rate, Thick Section Superplasticity Created via Friction Stir Processing, The Minerals, Metals & Materials Society. (2001) 183–194.
Google Scholar
[7]
M. W. Mahoney, S. P. Lynch, Friction Stir Processing, (2006) Report OMB No. 0704-0188.
Google Scholar
[8]
H. Mofidi, T. Nishihara, Effect of Friction Stir Processing on Superplastic Behavior of Zn–22Al Alloy, Proceedings of the 1st International Joint Symposium on Joining and Welding, Fujii, H (Ed.), Joining and Welding Institute, Osaka, Japan. (2013).
DOI: 10.1533/978-1-78242-164-1.383
Google Scholar
[9]
H. M. Tabatabaei, T. Nishihara, Grain Refinement of Zn–22Al Superplastic Alloy Using Friction Stir Processing, International Journal of Offshore and Polar Engineering. 27 Issue 2 (2017) 204-209.
DOI: 10.17736/ijope.2017.oa15
Google Scholar
[10]
M.Peel, A. Steuwer, M. Preuss, P. J. Withers, Microstructure, Mechanical Properties and Residual Stresses as a Function of Welding Speed in Aluminum AA5083, Friction Stir Welds. Acta Material. 51 (2003) 4791-4801.
DOI: 10.1016/s1359-6454(03)00319-7
Google Scholar
[11]
F. Gratecap, G. Racineux, S. Marya, A Simple Methodology to Define Conical Tool Geometry and Welding Parameters in Friction Stir Welding, 7th International Friction StirWelding Symp TWI. (2008) Japan published on CD.
DOI: 10.1007/s12289-008-0370-z
Google Scholar
[12]
A. Simar, Y. Brechet, B. de Meester, A. Denquin, T. Pardon, Microstructure, local and global mechanical properties of friction stir welds in aluminum alloy 6005A-T6, Mater. Sci. Eng., A. 486 no. 1-2 (2008) 85-95.
DOI: 10.1016/j.msea.2007.08.041
Google Scholar
[13]
R.S Mishra, Friction Stir Processing for Superplasticity, Adv. Mater. Process. 162 No. 2 (2004) 45-47.
Google Scholar
[14]
Ogawa, et al. (Eds.), SP-700 titanium alloy data sheets, United States (1993) Minerals, Metals and Materials Society.
Google Scholar