On Primary Recrystallization of High-Mn Austenitic Steels

Article Preview

Abstract:

The grain refinement is an effective approach to strengthen high-Mn TWIP/TRIP steels. The development of recrystallized microstructure with a grain size of about one micron increases the yield strength of high-Mn steels above 500 MPa. The fine grained microstructures can be easily developed by cold rolling followed by primary recrystallization. The recrystallized grain size can be expressed by a power law function of the strain hardening during the previous cold rolling with an exponent of -2. Taking the dislocation density as the main strengthener, the grain size is an inverse proportion to the dislocation density. Then, the number density of recrystallized grains can be expressed by a power law function of dislocation density evolved during cold rolling with an exponent of about 2.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

337-342

Citation:

Online since:

July 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R.Z. Valiev, R.K. Islamgaliev, I.V. Alexandrov, Bulk nanostructured materials from severe plastic deformation, Prog. Mater. Sci. 45 (2000) 103-189.

DOI: 10.1016/s0079-6425(99)00007-9

Google Scholar

[2] O.A. Kaibyshev, Superplasticity of Alloys, Intermetallics and Ceramics, Springer, Berlin, Germany, (1992).

Google Scholar

[3] T. Sakai, A. Belyakov, R. Kaibyshev, H. Miura, J.J. Jonas, Dynamic and post-dynamic recrystallization under hot, cold and severe plastic deformation conditions, Prog. Mater. Sci. 60 (2014) 130-207.

DOI: 10.1016/j.pmatsci.2013.09.002

Google Scholar

[4] F.J. Humphreys, M. Hatherly, Recrystallization and Related Annealing Phenomena, 2nd ed., Elsevier, Oxford, UK, (2004).

Google Scholar

[5] P.S. Kusakin, R.O. Kaibyshev, High-Mn twinning-induced plasticity steels: Microstructure and mechanical properties, Rev. Adv. Mater. Sci. 44 (2016) 326-360.

Google Scholar

[6] Z. Yanushkevich, A. Belyakov, R. Kaibyshev, C. Haase, D.A. Molodov, Effect of cold rolling on recrystallization and tensile behavior of a high-Mn steel, Mater. Charact. 112 (2016) 180-187.

DOI: 10.1016/j.matchar.2015.12.021

Google Scholar

[7] A. Kalinenko, P. Kusakin, A. Belyakov, R. Kaibyshev, D.A. Molodov, Microstructure and mechanical properties of a high-Mn TWIP steel subjected to cold rolling and annealing, Metals 7 (2017) article No. 571.

DOI: 10.3390/met7120571

Google Scholar

[8] J.J. Jonas, X. Quelennec, L. Jiang, E. Martin, The Avrami kinetics of dynamic recrystallization, Acta Mater. 57 (2009) 2748-2756.

DOI: 10.1016/j.actamat.2009.02.033

Google Scholar

[9] Y. Estrin, L.S. Toth, A. Molinari, Y. Brechet, A dislocation-based model for all hardening stages in large strain deformation, Acta Mater. 46 (1998) 5509-5522.

DOI: 10.1016/s1359-6454(98)00196-7

Google Scholar

[10] R.W. Armstrong, 60 years of Hall–Petch: past to present nano-scale connections, Mater. Trans. 55 (2014) 2–12.

DOI: 10.2320/matertrans.ma201302

Google Scholar

[11] P. Kusakin, A. Belyakov, D.A. Molodov, R. Kaibyshev, On the effect of chemical composition on yield strength of TWIP steels, Mater. Sci. Eng. A 687 (2017) 82-84.

DOI: 10.1016/j.msea.2017.01.080

Google Scholar