Fabrication of Nanostructured Gradient Tungsten-Cobalt Alloy Using Carbon Deficiency Powder

Article Preview

Abstract:

A nanostructured functionally graded hard alloy was obtained by sintering at temperatures from 1350 to 1410 ° C of two-layer "green bodies", each consisting of layer of powder with normal carbon content (WC-15Co-0.4VC-0.4Cr2C3) and powder layer with deficit of carbon (WC-8Co-0.4VC-0.4Cr2C3). The formation of the η phase (Co3W3C) in the layer with cobalt deficiency causes the migration of cobalt to it and prevents the return of cobalt back in a wide temperature range of temperatures (1350-1410). The porosity of the resulting nanocrystalline hard alloy at 1410 ° C is reduced to 2%, and the maximum hardness of the surface layer with a low cobalt content (10%) reaches 1945HV.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

370-376

Citation:

Online since:

September 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M.I. Dvornik, А.V. Zaitsev, Сhange in strength, hardness and cracking resistance in transitions from medium – grained to ultrafine hard alloy,Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional'nye Pokrytiya (Universities Proceedings. Powder Metallurgy аnd Functional Coatings). 2017 (2):39-46. (In Russian.).

DOI: 10.17073/1997-308x-2017-2-39-46

Google Scholar

[2] Z. Zak Fang, Xu Wang, Taegong Ryu, Kyu Sup Hwang, H.Y. Sohn Synthesis, sintering, and mechanical properties of nanocrystalline cemented tungsten carbide – A review // Int. Journal of Refractory Metals & Hard Materials, 27 (2009), 288–299.

DOI: 10.1016/j.ijrmhm.2008.07.011

Google Scholar

[3] X. Wang, K. S.Hwang, M. Koopmana, Z.Z. Fang, L. Zhang Mechanical properties and wear resistance of functionally graded WC–Co // Int. Journal of Refractory Metals & Hard Materials, 2013, Vol. 36, pp.46-51.

DOI: 10.1016/j.ijrmhm.2012.04.011

Google Scholar

[4] I. Konyashin, B. Ries, S. Hlawatschek, A. Mazilkin. Novel industrial hardmetals for mining, construction and wear applications. International Journal of Refractory Metals and Hard Materials, 2018, volume 71, pp.357-365.

DOI: 10.1016/j.ijrmhm.2017.10.021

Google Scholar

[5] I. Konyashin, B. Ries, F. Lachmann, A. T. Fry. A novel sintering technique for fabrication of functionally gradient WC–Co cemented carbides. J Mater Sci, 2012, Volume 47, issue 20, pp.7072-7084.

DOI: 10.1007/s10853-012-6516-x

Google Scholar

[6] O. Eso, Z. Fang, A. Griffo. Liquid phase sintering of functionally graded WC–Co composites. International Journal of Refractory Metals and Hard Materials, 2005, Volume 23, Issues 4-6, pp.233-241.

DOI: 10.1016/j.ijrmhm.2005.04.017

Google Scholar

[7] Peng Fan, Z. Zak Fang, Jun Guo. A review of liquid phase migration and methods for fabrication of functionally graded cemented tungsten carbide. Int. Journal of Refractory Metals and Hard Materials 36 (2013), p.2–9.

DOI: 10.1016/j.ijrmhm.2012.02.006

Google Scholar

[8] I. Konyashin, B. Ries, F. Lachmann, A. T. Fry, А novel sintering technique for fabrication of functionally gradient WC-Co cemented carbides, J Mater Sci. 47 20 (2012) 7072–7084.

DOI: 10.1007/s10853-012-6516-x

Google Scholar

[9] O. Eso, P. Fan, Z.Z. Fang, A kinetic model for cobalt gradient formation during liquid phase sintering of functionally graded WC–Co, International Journal of Refractory Metals & Hard Materials, 26 (2008) 91–97.

DOI: 10.1016/j.ijrmhm.2007.02.004

Google Scholar

[10] I. Konyashin, A.A. Zaitsev, D. Sidorenko, E.A. Levashov, B. Ries, S.N. Konischev, M. Sorokin, A.A. Mazilkin, M. Herrmann, A. Kaiser, Wettability of tungsten carbide by liquid binders in WC-Co cemented carbides: Is it complete for all carbon contents? International journal of refractory metals . hard materials International Journal of Refractory Metals & Hard Materials, 62 (2017).

DOI: 10.1016/j.ijrmhm.2016.06.006

Google Scholar

[11] V. Bonache, E. Rayon, M.D. Salvador, D. Busquets, Nanoindentation study of WC-12Co hardmetals obtained from nanocrystalline powders: Evalution of hardness and modulus on individual phases, Materials Science and Engineering A, 527 (2010).

DOI: 10.1016/j.msea.2010.01.026

Google Scholar