Films of Reduced Graphene Oxide with Percolation Networks of Nanographenes

Article Preview

Abstract:

Percolation networks of electrically connected nanographenes are the promising structures for solving the problem of the transfer of their peculiar quantum properties to the macroscopic level. In this work we report the results of investigations, conducted with using a set of complementary physical methods, on the origin, structural motifs and properties of such networks revealed in thermally reduced graphene oxide films. The presence of zero modes, which may be π-electronic states stabilized at the zigzag edges of network elements, has been established.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

388-393

Citation:

Online since:

September 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K. Nakada, M. Fujita, G. Dresselhaus, M.S. Dresselhaus, Edge state in graphene ribbons: nanometer size effect and edge shape dependence, Phys. Rev. B. 54 (1996) 17954-17961.

DOI: 10.1103/physrevb.54.17954

Google Scholar

[2] Y. Kobayashi, K. Fukui, T. Enoki, K. Kusakabe, Y. Kaburagi, Observation of zigzag and armchair edges of graphite using STM and STS, Phys. Rev. B. 71 (2005) 193406.

DOI: 10.1103/physrevb.71.193406

Google Scholar

[3] A.M. Ziatdinov, Nanographites, their compounds, and film structures, Russ. Chem. Bull. 64 (2015) 1-14.

DOI: 10.1007/s11172-015-0812-y

Google Scholar

[4] A.M. Ziatdinov, N.S. Saenko, P.G. Skrylnik, Molecular and electronic structure and magnetic properties of multilayer graphene nanoclusters and their changes under the influence of adsorbed molecules, Russ. Chem. Bull. 66 (2017) 837-848.

DOI: 10.1007/s11172-017-1816-6

Google Scholar

[5] A.M. Ziatdinov, P.G. Skrylnik, N.S. Saenko, The influence of an adsorbate and edge covalent bonds on topological zero modes in few-layer nanographenes, Phys. Chem. Chem. Phys. 19 (2017) 26957-26968.

DOI: 10.1039/c7cp03423g

Google Scholar

[6] Yu.M. Nikolenko, A.M. Ziatdinov, Synthesis and characterization of nanographites with chemically modified edges, Russ. J. Inorg. Chem. 57 (2012) 1436-1442.

DOI: 10.1134/s0036023612110101

Google Scholar

[7] R. Taira, A. Yamanaka, S. Okada, Electronic structure and electric polarity of edge-functionalized graphene nanoribbons, Jpn. J. Appl. Phys. 56 (2017) 085103.

DOI: 10.7567/jjap.56.085103

Google Scholar

[8] G. Magda, X. Jin, I. Hagymaґsi, P. Vancsoґ, Z. Osvaґth, P. Nemes-Incze, Room-temperature magnetic order on zigzag edges of narrow graphene nanoribbons, Nature. 514 (2014) 608-611.

DOI: 10.1038/nature13831

Google Scholar

[9] K. Sasaki, J. Jiang, R. Saito, S. Onari, Y. Tanaka, Theory of superconductivity of carbon nanotubes and graphene, J. Phys. Soc. Jpn. 76 (2007) 033702.

DOI: 10.1143/jpsj.76.033702

Google Scholar

[10] A. Kinikar, T.P. Sai, S. Bhattacharyya, A. Agarwala, T. Biswas, S.K. Sarker, Quantized edge modes in atomic-scale point contacts in graphene, Nature Nanotechnol. 12 (2017) 564-568.

DOI: 10.1038/nnano.2017.24

Google Scholar

[11] W.S. Hummers Jr., R.E. Offeman, Preparation of graphitic oxide, J. Amer. Chem. Soc. 80 (1958) 1339-1339.

DOI: 10.1021/ja01539a017

Google Scholar

[12] A.M. Ziatdinov, Y.V. Zelenskii, A.A. Uminskii, E.G. Ippolitov, Synthesis and investigation of intercalated oxygen-containing graphite compounds, Zhurnal Neorganicheskoi Khimii. 30 (1985) 1658-1664.

Google Scholar

[13] N. Iwashita, C.R. Park, H. Fujimoto, M. Shiraishi, M. Inagaki, Specification for a standard procedure of X-ray diffraction measurements on carbon materials, Carbon. 42 (2004) 701-714.

DOI: 10.1016/j.carbon.2004.02.008

Google Scholar

[14] L.G. Cancado, A. Jorio, M.A. Pimenta, Measuring the absolute Raman cross section of nanographites, Phys. Rev. B. 76 (2007) 064304.

DOI: 10.1103/physrevb.76.064304

Google Scholar

[15] A.C. Ferrari, J. Robertson, Interpretation of Raman spectra of disordered and amorphous carbon, Phys. Rev. B. 61 (2000) 14095-14107.

DOI: 10.1103/physrevb.61.14095

Google Scholar

[16] A.M. Ziatdinov, N.M. Mishchenko, Yu.M. Nikolenko, Phase transition and incommensurate states in GIC C5nHNO3, Synth. Met. 59 (1993) 253-258.

DOI: 10.1016/0379-6779(93)91034-y

Google Scholar

[17] A.M. Ziatdinov, N.M. Mishchenko, Phase transitions and nonmetallic, temperature dependence of conduction electron spin resonance line width in quasi-two-dimensional synthetic metal C15HNO3, Solid State Commun. 97 (1996) 1085-1089.

DOI: 10.1016/0038-1098(95)00702-4

Google Scholar

[18] M. Ziatdinov, S. Fujii, M. Kiguchi, T. Enoki, S. Jesse, S.V. Kalinin, Data mining graphene: correlative analysis of structure and electronic degrees of freedom in graphenic monolayers with defects, Nanotechnology. 27 (2016) 495703.

DOI: 10.1088/0957-4484/27/49/495703

Google Scholar