[1]
Titanium and Titanium Alloys: Fundamentals and Applications. Edited by C. Leyens, M. Peters. Wiley, (2003).
Google Scholar
[2]
Y. Zheng, L. Zhao, K. Tangri, Microstructure evolution during heat treatment of a Cr-bearing Ti3Al+TiAl alloy, Scr. Metall. Mater. 26 (1992) 219-224.
DOI: 10.1016/0956-716x(92)90176-f
Google Scholar
[3]
E. Hamzah, M. Kanniah, M. Harun, Effect of chromium addition on microstructure, tensile properties and creep resistance of as-cast Ti-48Al alloy, J. Mater. Sci. 42 (2007) 9063-9069.
DOI: 10.1007/s10853-007-1692-9
Google Scholar
[4]
Z.Y. He, Z.X. Wang, F. Zhang, Z.Y. Wang, X.P. Liu, Oxidation behavior of TiAl alloy treated by plasma surface chromizing process, Surface and Coatings Technology, 228 (2013) S287-S291.
DOI: 10.1016/j.surfcoat.2012.05.123
Google Scholar
[5]
X. Gonzea, B. Amadond, P.-M. Angladee, J.-M. Beukena, F. Bottind, P. Boulangera, F. Brunevalq, D. Calistej, R. Caracasl, M. Côtéo, T. Deutschj, L. Genovesei, Ph. Ghosezk, M. Giantomassia, S. Goedeckerc, D.R. Hamannm, P. Hermetp, F. Jolletd, G. Jomardd, S. Lerouxd, M. Mancinid, S. Mazevetd, M.J.T. Oliveiraa, G. Onidab, Y. Pouillona, T. Rangela, G.- M. Rignanesea, D. Sangallib, R. Shaltafa, M. Torrentd, M.J. Verstraetea, G. Zerahd and J.W. Zwanziger, ABINIT: First-principles approach to material and nanosystem properties, Computer Phys. Comm. 180 (2009).
Google Scholar
[6]
H. Hohenberg, W. Kohn, Inhomogeneous Electron Gas, Phys. Rev. 136 (1964) B864-B871.
DOI: 10.1103/physrev.136.b864
Google Scholar
[7]
W. Kohn, J.L. Sham, Self-Consistent Equations Including Exchange and Correlation Effects, Phys. Rev. 140 (1965) A1133-A1138.
DOI: 10.1103/physrev.140.a1133
Google Scholar
[8]
J.P. Perdew, K. Burke, Y. Wang, Generalized gradient approximation for the exchange-correlation hole of a many-electron system, Phys. Rev. B. 54 (1996) 16533-16540.
DOI: 10.1103/physrevb.54.16533
Google Scholar
[9]
H.J. Monkhorst, J.D. Pack, Specials points for Brillouin-zone integrations, Phys. Rev. B. 13 (1976) 5188-5193.
DOI: 10.1103/physrevb.13.5188
Google Scholar
[10]
M. Fuchs, M. Scheffler, Ab initio pseudopotentials for electronic structure calculations of polyatomic systems using density functional theory, Comp. Phys. Commun. 119 (1999) 32-67.
DOI: 10.1016/s0010-4655(98)00201-x
Google Scholar
[11]
N. Troullier, J.L. Martins, Efficient pseudopotentials for plane-wave calculations, Phys Rev B. 43 (1991) 1993-(2006).
DOI: 10.1103/physrevb.43.1993
Google Scholar
[12]
W. B. Pearson, A Handbook of Lattice Spacing and Structure of Metals and Alloys. Pergamon Press, Oxford, (1967).
Google Scholar
[13]
K. Tanaka, M. Koiwa, Single-crystal elastic constants of intermetallic compounds, Intermetallics, 4 (1996) S29-S39.
DOI: 10.1016/0966-9795(96)00014-3
Google Scholar
[14]
G. Simmons, H. Wang, Single Crystal Elastic Constants and Calculated Aggregate Properties: A Handbook, M.I.T. Press., (1971).
Google Scholar
[15]
A. W. Hull, W. P. Davey, Crystal structure of chromium, Phys. Rev. 14 (1919) 540-540.
Google Scholar
[16]
P. Olsson, I. Abrikosov, L. Vitos and J. Wallenius, Ab initio formation energies of Fe-Cr alloys, J. Nucl. Mater. 321 (2003) 84-90.
DOI: 10.1016/s0022-3115(03)00207-1
Google Scholar
[17]
D. Music, J. M. Schneider, Effect of transition metal additives on electronic structure and elastic properties of TiAl and Ti3Al, Phys. Rev. B. 74 (2006) 174110-1 - 174110-5.
Google Scholar
[18]
Shared Facility Center Data Center of FEB RAS, (Khabarovsk), http://lits.ccfebras.ru.
Google Scholar