Computer Simulation of Plastic Deformation in Tial Alloys in the Presence of Chromium

Article Preview

Abstract:

Quantum-mechanical calculations were used to investigate shear rupture in intermetallic titanium aluminide (TiAl) alloys in the presence of vacancy or chromium dopant. The substitution of both Ti and Al atoms by Cr atoms in the γ-TiAl crystal lattice was considered. The simulation of shear was carried out in the (111) slip plane along two directions, namely the [110] and [11-2]. The decrease in the shear resistance of the defects present in the γ-TiAl lattice was estimated. It was shown that when chromium occupies a titanium vacancy, it can compensate for this defect by increasing the shear modulus for the {111} <110> slip system.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

383-387

Citation:

Online since:

September 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Titanium and Titanium Alloys: Fundamentals and Applications. Edited by C. Leyens, M. Peters. Wiley, (2003).

Google Scholar

[2] Y. Zheng, L. Zhao, K. Tangri, Microstructure evolution during heat treatment of a Cr-bearing Ti3Al+TiAl alloy, Scr. Metall. Mater. 26 (1992) 219-224.

DOI: 10.1016/0956-716x(92)90176-f

Google Scholar

[3] E. Hamzah, M. Kanniah, M. Harun, Effect of chromium addition on microstructure, tensile properties and creep resistance of as-cast Ti-48Al alloy, J. Mater. Sci. 42 (2007) 9063-9069.

DOI: 10.1007/s10853-007-1692-9

Google Scholar

[4] Z.Y. He, Z.X. Wang, F. Zhang, Z.Y. Wang, X.P. Liu, Oxidation behavior of TiAl alloy treated by plasma surface chromizing process, Surface and Coatings Technology, 228 (2013) S287-S291.

DOI: 10.1016/j.surfcoat.2012.05.123

Google Scholar

[5] X. Gonzea, B. Amadond, P.-M. Angladee, J.-M. Beukena, F. Bottind, P. Boulangera, F. Brunevalq, D. Calistej, R. Caracasl, M. Côtéo, T. Deutschj, L. Genovesei, Ph. Ghosezk, M. Giantomassia, S. Goedeckerc, D.R. Hamannm, P. Hermetp, F. Jolletd, G. Jomardd, S. Lerouxd, M. Mancinid, S. Mazevetd, M.J.T. Oliveiraa, G. Onidab, Y. Pouillona, T. Rangela, G.- M. Rignanesea, D. Sangallib, R. Shaltafa, M. Torrentd, M.J. Verstraetea, G. Zerahd and J.W. Zwanziger, ABINIT: First-principles approach to material and nanosystem properties, Computer Phys. Comm. 180 (2009).

Google Scholar

[6] H. Hohenberg, W. Kohn, Inhomogeneous Electron Gas, Phys. Rev. 136 (1964) B864-B871.

DOI: 10.1103/physrev.136.b864

Google Scholar

[7] W. Kohn, J.L. Sham, Self-Consistent Equations Including Exchange and Correlation Effects, Phys. Rev. 140 (1965) A1133-A1138.

DOI: 10.1103/physrev.140.a1133

Google Scholar

[8] J.P. Perdew, K. Burke, Y. Wang, Generalized gradient approximation for the exchange-correlation hole of a many-electron system, Phys. Rev. B. 54 (1996) 16533-16540.

DOI: 10.1103/physrevb.54.16533

Google Scholar

[9] H.J. Monkhorst, J.D. Pack, Specials points for Brillouin-zone integrations, Phys. Rev. B. 13 (1976) 5188-5193.

DOI: 10.1103/physrevb.13.5188

Google Scholar

[10] M. Fuchs, M. Scheffler, Ab initio pseudopotentials for electronic structure calculations of polyatomic systems using density functional theory, Comp. Phys. Commun. 119 (1999) 32-67.

DOI: 10.1016/s0010-4655(98)00201-x

Google Scholar

[11] N. Troullier, J.L. Martins, Efficient pseudopotentials for plane-wave calculations, Phys Rev B. 43 (1991) 1993-(2006).

DOI: 10.1103/physrevb.43.1993

Google Scholar

[12] W. B. Pearson, A Handbook of Lattice Spacing and Structure of Metals and Alloys. Pergamon Press, Oxford, (1967).

Google Scholar

[13] K. Tanaka, M. Koiwa, Single-crystal elastic constants of intermetallic compounds, Intermetallics, 4 (1996) S29-S39.

DOI: 10.1016/0966-9795(96)00014-3

Google Scholar

[14] G. Simmons, H. Wang, Single Crystal Elastic Constants and Calculated Aggregate Properties: A Handbook, M.I.T. Press., (1971).

Google Scholar

[15] A. W. Hull, W. P. Davey, Crystal structure of chromium, Phys. Rev. 14 (1919) 540-540.

Google Scholar

[16] P. Olsson, I. Abrikosov, L. Vitos and J. Wallenius, Ab initio formation energies of Fe-Cr alloys, J. Nucl. Mater. 321 (2003) 84-90.

DOI: 10.1016/s0022-3115(03)00207-1

Google Scholar

[17] D. Music, J. M. Schneider, Effect of transition metal additives on electronic structure and elastic properties of TiAl and Ti3Al, Phys. Rev. B. 74 (2006) 174110-1 - 174110-5.

Google Scholar

[18] Shared Facility Center Data Center of FEB RAS, (Khabarovsk), http://lits.ccfebras.ru.

Google Scholar