[1]
Enoki T., Ando T. (Eds.), Physics and Chemistry of Graphene – Graphene to Nanographene, Pan Stanford Publishing Pte Ltd., Singapore, 2013, 476 pp.
DOI: 10.1201/b14396
Google Scholar
[2]
G.Z. Magda, X. Jin, I. Hagymasi, P. Vancso, Z. Osvath, P. Nemes-Incze, C. Hwang, L.P. Biro, L. Tapaszto, Room temperature magnetic order on zigzag edges of narrow graphene nanoribbons, Nature. 514 (2014) 608-611.
DOI: 10.1038/nature13831
Google Scholar
[3]
A.M. Ziatdinov, Nanographites, their compounds, and film structures, Russ. Chem. Bull. 64 (2015) 1-14.
DOI: 10.1007/s11172-015-0812-y
Google Scholar
[4]
A. Kinikar, T.P. Sai, S. Bhattacharyya, A. Agarwala, T. Biswas, S.K. Sarker, H.R. Krishnamurthy, M. Jain, V.B. Shenoy, A. Ghosh, Quantized edge modes in atomic-scale point contacts in graphene, Nat. Nanotechnol. 12 (2017) 564-568.
DOI: 10.1038/nnano.2017.24
Google Scholar
[5]
A.M. Ziatdinov, N.S. Saenko, P.G. Skrylnik, Molecular and electronic structures and magnetic properties of multilayer graphene nanoclusters and their changes under the influence of adsorbed molecules, Russ. Chem. Bull. 66 (2017) 837-848.
DOI: 10.1007/s11172-017-1816-6
Google Scholar
[6]
A.M. Ziatdinov, P.G. Skrylnik, N.S. Saenko, The influence of an adsorbate and edge covalent bonds on topological zero modes in few-layer nanographenes, Phys. Chem. Chem. Phys. 19 (2017) 26957-26968.
DOI: 10.1039/c7cp03423g
Google Scholar
[7]
R. Das, M.E. Ali, S.B.A. Hamid, Current applications of X-ray powder diffraction - A review, Rev. Adv. Mater. Sci. 38 (2014) 95-109.
Google Scholar
[8]
H. Fujimoto, Theoretical X-ray scattering intensity of carbons with turbostratic stacking and AB stacking structures, Carbon. 41 (2003) 1585-1592.
DOI: 10.1016/s0008-6223(03)00116-7
Google Scholar
[9]
A.J.C. Wilson, On variance as a measure of line broadening in diffractometry: effect of a distribution of sizes on the apparent crystallite size, J. Appl. Cryst. 1 (1968) 194-196.
DOI: 10.1107/s0021889868005315
Google Scholar
[10]
C. Sisu, R. Iordanescu , V. Stanciu, I. Stefanescu, A.M. Vlaicu, V.V. Grecu, Raman spectroscopy studies of some carbon molecular sieves, Dig. J. Nanomater. Bios. 11 (2016) 435-442.
Google Scholar
[11]
B.E. Warren, X-ray diffraction in random layer lattices, Phys. Rev. 59 (1941) 693-698.
DOI: 10.1103/physrev.59.693
Google Scholar
[12]
N. Iwashita, C.R. Park, H. Fujimoto, M. Shiraishi, M. Inagaki, Specification for a standard procedure of X-ray diffraction measurements on carbon materials, Carbon. 42 (2004) 701-714.
DOI: 10.1016/j.carbon.2004.02.008
Google Scholar
[13]
H. Fujimoto, A. Mabuchi, K. Tokumitsu, T. Kasuh, N. Akuzawa, Effect of crystallite size on the chemical compositions of the stage 1 alkali metal-graphite intercalation compounds, Carbon. 32 (1994) 193-198.
DOI: 10.1016/0008-6223(94)90182-1
Google Scholar
[14]
R.K. Boruah, B.K. Saikia, B.P. Baruah, N.C. Dey, X-ray scattering study of the average polycyclic aromatic unit in Ledo coal, J. Appl. Crystallogr. 41 (2008) 27-30.
DOI: 10.1107/s0021889807049655
Google Scholar
[15]
L. Biennier, R. Georges, V. Chandrasekaran, B. Rowe, T. Bataille, V. Jayaram, K.P.J. Reddy, E. Arunan, Characterization of circumstellar carbonaceous dust analogues produced by pyrolysis of acetylene in a porous graphite reactor, Carbon. 47 (2009).
DOI: 10.1016/j.carbon.2009.07.050
Google Scholar
[16]
H. Fujimoto, M. Shiraishi Characterization of unordered carbon using Warren–Bodenstein's equation, Carbon. 39 (2001) 1753-1761.
DOI: 10.1016/s0008-6223(00)00308-0
Google Scholar
[17]
S.J. Mu, Y.C. Su, L.H. Xiao, S.D. Liu, T. Hu, H.B. Tang, X-ray diffraction pattern of graphite oxide, Chinese Phys. Lett. 30 (2013) 096101.
DOI: 10.1088/0256-307x/30/9/096101
Google Scholar
[18]
T.W. Zerda, W. Xu, H. Yang, M. Gerspacher, The effects of heating and cooling rates on the structure of carbon black particles, Rubber Chem. Technol. 71 (1998) 26-37.
DOI: 10.5254/1.3538469
Google Scholar
[19]
E.A. Belenkov, Formation of graphite structure in carbon crystallites, Inorg. Mater. 37 (2001) 928-934.
Google Scholar
[20]
S.K. Nayak, R. Sathishkumar, T.N.G. Row, Directing role of functional groups in selective generation of C–H⋯π interactions: In situ cryo-crystallographic studies on benzyl derivatives, CrystEngComm. 12 (2010) 3112-3118.
DOI: 10.1039/c001190h
Google Scholar
[21]
T.M. Krygowski, M. Cyranski, A. Ciesielski, B. Swirska, P. Leszczynski, Separation of the energetic and geometric contributions to aromaticity. 2. Analysis of the aromatic character of benzene rings in their various topological environments in the benzenoid hydrocarbons. Crystal and molecular structure of coronene, J. Chem. Inf. Model. 36 (1996).
DOI: 10.1002/chin.199711260
Google Scholar
[22]
R.W. Lynch, H.G. Drickamer, Effect of high pressure on the lattice parameters of diamond, graphite, and hexagonal boron nitride, J. Chem. Phys. 44 (1966) 181-184.
DOI: 10.1063/1.1726442
Google Scholar
[23]
K. He, G.D. Lee, A.W. Robertson, E. Yoon, J.H. Warner, Hydrogen-free graphene edges, Nat. Commun. 5 (2014) 1-7.
Google Scholar
[24]
Z.Q. Li, C.J. Lu, Z.P. Xia, Y. Zhou, Z. Luo, X-ray diffraction patterns of graphite and turbostratic carbon, Carbon. 45 (2007) 1686-1695.
DOI: 10.1016/j.carbon.2007.03.038
Google Scholar