Full-Profile Approximation of the X-Ray Diffractogram for Nanographite Powder Including γ-Band by Taking into Account Radial Dependence of Interatomic Distances

Article Preview

Abstract:

This paper outlines the procedure for determining the sizes, structural parameters and percentage content of various particle types in nanographite powders by full-profile approximation of the X-ray diffractogram of sample with using a set of X-ray diffraction profiles for powders of model nanographites. It was shown that taking into account the model nanographites with the radial dependence of interatomic distances within the layer and the dependence of interlayer distances on average number of atoms in the layer allows to describe the X-ray diffraction profile of nanographite powder in the wide angular range including so-called γ-band in small angles without assumptions on presence of other structures in it.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

394-399

Citation:

Online since:

September 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Enoki T., Ando T. (Eds.), Physics and Chemistry of Graphene – Graphene to Nanographene, Pan Stanford Publishing Pte Ltd., Singapore, 2013, 476 pp.

DOI: 10.1201/b14396

Google Scholar

[2] G.Z. Magda, X. Jin, I. Hagymasi, P. Vancso, Z. Osvath, P. Nemes-Incze, C. Hwang, L.P. Biro, L. Tapaszto, Room temperature magnetic order on zigzag edges of narrow graphene nanoribbons, Nature. 514 (2014) 608-611.

DOI: 10.1038/nature13831

Google Scholar

[3] A.M. Ziatdinov, Nanographites, their compounds, and film structures, Russ. Chem. Bull. 64 (2015) 1-14.

DOI: 10.1007/s11172-015-0812-y

Google Scholar

[4] A. Kinikar, T.P. Sai, S. Bhattacharyya, A. Agarwala, T. Biswas, S.K. Sarker, H.R. Krishnamurthy, M. Jain, V.B. Shenoy, A. Ghosh, Quantized edge modes in atomic-scale point contacts in graphene, Nat. Nanotechnol. 12 (2017) 564-568.

DOI: 10.1038/nnano.2017.24

Google Scholar

[5] A.M. Ziatdinov, N.S. Saenko, P.G. Skrylnik, Molecular and electronic structures and magnetic properties of multilayer graphene nanoclusters and their changes under the influence of adsorbed molecules, Russ. Chem. Bull. 66 (2017) 837-848.

DOI: 10.1007/s11172-017-1816-6

Google Scholar

[6] A.M. Ziatdinov, P.G. Skrylnik, N.S. Saenko, The influence of an adsorbate and edge covalent bonds on topological zero modes in few-layer nanographenes, Phys. Chem. Chem. Phys. 19 (2017) 26957-26968.

DOI: 10.1039/c7cp03423g

Google Scholar

[7] R. Das, M.E. Ali, S.B.A. Hamid, Current applications of X-ray powder diffraction - A review, Rev. Adv. Mater. Sci. 38 (2014) 95-109.

Google Scholar

[8] H. Fujimoto, Theoretical X-ray scattering intensity of carbons with turbostratic stacking and AB stacking structures, Carbon. 41 (2003) 1585-1592.

DOI: 10.1016/s0008-6223(03)00116-7

Google Scholar

[9] A.J.C. Wilson, On variance as a measure of line broadening in diffractometry: effect of a distribution of sizes on the apparent crystallite size, J. Appl. Cryst. 1 (1968) 194-196.

DOI: 10.1107/s0021889868005315

Google Scholar

[10] C. Sisu, R. Iordanescu , V. Stanciu, I. Stefanescu, A.M. Vlaicu, V.V. Grecu, Raman spectroscopy studies of some carbon molecular sieves, Dig. J. Nanomater. Bios. 11 (2016) 435-442.

Google Scholar

[11] B.E. Warren, X-ray diffraction in random layer lattices, Phys. Rev. 59 (1941) 693-698.

DOI: 10.1103/physrev.59.693

Google Scholar

[12] N. Iwashita, C.R. Park, H. Fujimoto, M. Shiraishi, M. Inagaki, Specification for a standard procedure of X-ray diffraction measurements on carbon materials, Carbon. 42 (2004) 701-714.

DOI: 10.1016/j.carbon.2004.02.008

Google Scholar

[13] H. Fujimoto, A. Mabuchi, K. Tokumitsu, T. Kasuh, N. Akuzawa, Effect of crystallite size on the chemical compositions of the stage 1 alkali metal-graphite intercalation compounds, Carbon. 32 (1994) 193-198.

DOI: 10.1016/0008-6223(94)90182-1

Google Scholar

[14] R.K. Boruah, B.K. Saikia, B.P. Baruah, N.C. Dey, X-ray scattering study of the average polycyclic aromatic unit in Ledo coal, J. Appl. Crystallogr. 41 (2008) 27-30.

DOI: 10.1107/s0021889807049655

Google Scholar

[15] L. Biennier, R. Georges, V. Chandrasekaran, B. Rowe, T. Bataille, V. Jayaram, K.P.J. Reddy, E. Arunan, Characterization of circumstellar carbonaceous dust analogues produced by pyrolysis of acetylene in a porous graphite reactor, Carbon. 47 (2009).

DOI: 10.1016/j.carbon.2009.07.050

Google Scholar

[16] H. Fujimoto, M. Shiraishi Characterization of unordered carbon using Warren–Bodenstein's equation, Carbon. 39 (2001) 1753-1761.

DOI: 10.1016/s0008-6223(00)00308-0

Google Scholar

[17] S.J. Mu, Y.C. Su, L.H. Xiao, S.D. Liu, T. Hu, H.B. Tang, X-ray diffraction pattern of graphite oxide, Chinese Phys. Lett. 30 (2013) 096101.

DOI: 10.1088/0256-307x/30/9/096101

Google Scholar

[18] T.W. Zerda, W. Xu, H. Yang, M. Gerspacher, The effects of heating and cooling rates on the structure of carbon black particles, Rubber Chem. Technol. 71 (1998) 26-37.

DOI: 10.5254/1.3538469

Google Scholar

[19] E.A. Belenkov, Formation of graphite structure in carbon crystallites, Inorg. Mater. 37 (2001) 928-934.

Google Scholar

[20] S.K. Nayak, R. Sathishkumar, T.N.G. Row, Directing role of functional groups in selective generation of C–H⋯π interactions: In situ cryo-crystallographic studies on benzyl derivatives, CrystEngComm. 12 (2010) 3112-3118.

DOI: 10.1039/c001190h

Google Scholar

[21] T.M. Krygowski, M. Cyranski, A. Ciesielski, B. Swirska, P. Leszczynski, Separation of the energetic and geometric contributions to aromaticity. 2. Analysis of the aromatic character of benzene rings in their various topological environments in the benzenoid hydrocarbons. Crystal and molecular structure of coronene, J. Chem. Inf. Model. 36 (1996).

DOI: 10.1002/chin.199711260

Google Scholar

[22] R.W. Lynch, H.G. Drickamer, Effect of high pressure on the lattice parameters of diamond, graphite, and hexagonal boron nitride, J. Chem. Phys. 44 (1966) 181-184.

DOI: 10.1063/1.1726442

Google Scholar

[23] K. He, G.D. Lee, A.W. Robertson, E. Yoon, J.H. Warner, Hydrogen-free graphene edges, Nat. Commun. 5 (2014) 1-7.

Google Scholar

[24] Z.Q. Li, C.J. Lu, Z.P. Xia, Y. Zhou, Z. Luo, X-ray diffraction patterns of graphite and turbostratic carbon, Carbon. 45 (2007) 1686-1695.

DOI: 10.1016/j.carbon.2007.03.038

Google Scholar