[1]
O.D. Makinde, Magneto-Hydrodynamic Stability of Plane-Poiseuille Flow Using Multideck Asymptotic Technique, Mathematical and Computer Modelling. 37 (2003) 251-259.
DOI: 10.1016/s0895-7177(03)00004-9
Google Scholar
[2]
O.D. Makinde, Temporal stability of small disturbances in MHD Jeffery–Hamel flows, Computers and Mathematics with Applications. 53 (2007) 128–136
DOI: 10.1016/j.camwa.2006.06.014
Google Scholar
[3]
O.D. Makinde, On the Chebyshev collocation spectral approach to stability of fluid flow in a porous medium, Int. J. Numer. Meth. Fluids. 59 (2009) 791–799
DOI: 10.1002/fld.1847
Google Scholar
[4]
O.D. Makinde, P. Y. Mhone, on temporal stability analysis for hydromagnetic flow in a channel filled with a saturated porous medium, Flow, Turbulence and Combustion. 83 (2009) 21-32.
DOI: 10.1007/s10494-008-9187-6
Google Scholar
[5]
M. Takashima, The stability of the modified plane Poiseuille flow in the presence of a transverse magnetic field. Fluid Dyn. Res. 17, 293–310 (1996). doi:10.1016/0169-5983(95) 00038-0
DOI: 10.1016/0169-5983(95)00038-0
Google Scholar
[6]
B. M. Shankar, J. Kumar, I. S. Shivakumara, Magnetohydrodynamic stability of natural convection in a vertical porous slab, Journal of Magnetism and Magnetic Materials 421 (2017) 152– 164.
DOI: 10.1016/j.jmmm.2016.08.010
Google Scholar
[7]
V. Poply, P. Singh, A. K. Yadav, Stability analysis of MHD outer velocity flow on a stretching cylinder, Alexandria Engineering Journal. 57 (2018) 2077–(2083)
DOI: 10.1016/j.aej.2017.05.025
Google Scholar
[8]
X. Zhai, K. Chen, B. Song, Linear instability of channel flow with microgroove-type anisotropic superhydrophobic walls. (2022) physics.flu-dyn. arXiv:2209.05091
DOI: 10.1103/physrevfluids.8.023901
Google Scholar
[9]
K. H. Yu, C. J. Teo, and B. C. Khoo. Linear stability of pressure-driven flow over longitudinal superhydrophobic grooves. Phys. Fluids, 28:022001, 2016.
DOI: 10.1063/1.4940336
Google Scholar
[10]
C. Chai and B. Song. Stability of slip channel flow revisited. Phys. Fluids, 31:084105, 2019.
Google Scholar
[11]
X. Xiong and J. Tao. Linear stability and energy stability of plane Poiseuille flow with isotropic and anisotropic slip boundary conditions. Phys. Fluids, 32 (2020) 094104.
DOI: 10.1063/5.0015737
Google Scholar
[12]
J. O. Pralits, E. Alinovi, and A. Bottaro. Stability of the flow in a plane microchannel with one or two superhydrophobic walls. Phys. Rev. Fluids, 2 (2017) 013901.
DOI: 10.1103/physrevfluids.2.013901
Google Scholar
[13]
S. Ceccacci, S. A. W. Calabretto, C. Thomas, and J. P. Denier, The linear stability of slip channel flows, Physics of Fluids. 34(7) (2022)
DOI: 10.1063/5.0098609
Google Scholar
[14]
A. Rafiki and A. Hifdi Stability of plane Poiseuille flow of viscoelastic fluids in the presence of a transverse magnetic field, MATEC Web of Conferences 1 06006 (2012), DOI: 10.1051/ matecconf 0106006
DOI: 10.1051/matecconf/20120106006
Google Scholar
[15]
Z. Hussain, S. Hussain, T. Kong, and Z. Liu, Instability of MHD couette flow of an electrically conducting fluid, AIP Advances 8 (2018) 105209.
DOI: 10.1063/1.5051624
Google Scholar
[16]
A. Laouer, E Mezaache and S. Laouar, Stability analysis of MHD fluid flow over a moving plate with pressure gradient using the Chebyshev spectral method, International Journal of Engineering Research in Africa. 49 (2020) 29-38
DOI: 10.4028/www.scientific.net/jera.49.29
Google Scholar
[17]
Drazin, P.G.: Introduction to Hydrodynamic Stability. Cambridge University Press, Cambridge (2002)
Google Scholar
[18]
P. Sibanda, O.D. Makinde, A Mathematical Introduction to Incompressible Flow, University of Zimbabwe publisher (2000)
Google Scholar
[19]
Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A.: Spectral Methods in Fluid Dynamics. Springer, New York (1998)
Google Scholar
[20]
Khorrami, M.R., Malik, M. R., Ash, R. R. Application of spectral techniques to the stability of swirling flows. J. Comput. Phys. 81 (1989) 206–229
DOI: 10.1016/0021-9991(89)90071-5
Google Scholar
[21]
Orszag, S.A.: Accurate solution of the Orr–Sommerfield stability equation. J. Fluid Mech. 50(4) (1971) 689–703
DOI: 10.1017/S0022112071002842
Google Scholar
[22]
Z. Shah, S. Islam, H. Ayaz, and S. Khan, "Radiative heat and mass transfer analysis of micropolar nanofluid flow of Casson fluid between two rotating parallel plates with effects of Hall current," ASME Journal of Heat Transfer (2018).
DOI: 10.1115/1.4040415
Google Scholar
[23]
Z. Shah, S. Islam, T. Gul, E Bonyah, and M. A. Khan, "The electrical MHD and Hall current impact on micropolar nanofluid flow between rotating parallel plates," Results in Physics 9 (2018) 1201–1214.
DOI: 10.1016/j.rinp.2018.01.064
Google Scholar
[24]
G. Ishaq, Z. Ali, S. Shah, Islam and S. Muhammad, "Entropy generation on nanofluid thin film flow of Eyring–Powell fluid with thermal radiation and MHD effect on an unsteady porous stretching sheet, Entropy 20 (2018) 412. doi.org/
DOI: 10.3390/e20060412
Google Scholar
[25]
H. Hammed, M. Haneef, Z. Shah, S. Islam, W. Khan, and S. Muhammad, "The combined magnetohydrodynamic and electric field effect on an unsteady Maxwell nanofluid flow over stretching surface under the influence of variable heat and thermal radiation," Applied Sciences 8 (2018) 160
DOI: 10.3390/app8020160
Google Scholar
[26]
T.A Yusuf, R. Naveen Kumar, R. J. Punith Gowda, U.D Akpan, Entropy generation on flow and heat transfer of a reactive MHD Sisko fluid through inclined walls with porous medium, International Journal of Ambient Energy. 43(1) (2022) 6307-6317.
DOI: 10.1080/01430750.2021.2013941
Google Scholar
[27]
M. I. Anwar, K. Rafique, M. Misiran S A Shehzad, Numerical study of hydrodynamic flow of a Casson nanomaterial past an inclined sheet under porous medium, Heat Transfer-Asian Res. (2019) 1-28.
DOI: 10.1002/htj.21614
Google Scholar
[28]
H B Lanjwani, S. Saleem, M. S Chandio, M. I Anwar and N Abbas, Stability analysis of triple solutions of Casson nanofluid past on a vertical exponentially stretching/shrinking sheet, Advances in Mechanical Engineering. 13(11) (2021) 1–13.
DOI: 10.1177/16878140211059679
Google Scholar