Thermal Effect of Bobbin Tool Friction Stir Welding on the Mechanical Behavior of High Density Polyethylene Sheets: Experimental Study

Article Preview

Abstract:

Bobbin friction stir welding (BT-FSW) is a variant of the conventional friction stir welding (C-FSW). This method has been applied of welding high density polyethylene (HDPE) plates; where a rotating symmetrical tool causes a fully penetrated bond, it can weld the upper and lower surface of the work-piece in the same pass. BT-FSW process involves complex heat generation and HDPE flow, which directly affects on the weld area and on mechanical properties of welded joint. Heat generation and material flow during BT-FSW are significantly affected by the tool design features, process parameters and mechanical behavior of work piece materials. Studying the temperature of polyethylene sheets welded by BT-FSW can help in analyzing the mechanism of weld formation and also can provide theoretical guidance for the tool design, process parameter selection and even new process development. In the unique work described in this paper, the 11.4 mm-thick HDPE plates were welded successfully by bobbin-tool friction stir welding. Measurements of the material temperatures were performed by thermocouples which are placed near and at the weld seam. The weld quality was determined in terms of no defects in the stir zone and the tensile strength of the joint. It was found that considerable melting occurred between the rotating shoulders and on the trailing side of the rotating pin. Movement of the molten material by the rotating tool created a very black band in the stir zone. Thermocouples measurements indicated that the temperatures were higher on the advancing side (AS) compared to those on the retreating side (RS). Tensile tests and hardness measurements were performed on welded and seamless sheet samples. The results were analyzed to compare the mechanical properties. To demonstrate the variation in micromechanical properties between welded and seamless sheet samples, micro hardness (HV) testing was used to explain the difference. The HV of the HDPE plates weld by BT-FSW, were relatively symmetrical with respect to the parting line. The maximum hardness levels were reached in the weld bead at around 66 HV in the welded nugget; there was a rise in the level of hardness, in particular at retreating side (RS) and at advancing side (AS) where the value reached 68.60 HV.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

93-114

Citation:

Online since:

June 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Boudrahem, A. Belbah, O. Kirati, Etude de Vieillissement d'un Polyéthylène de haute Densité (PEHD 100) Utilisé dans les Conduites à Gaz Sous Pressions, Journal of Materials, Processes and Environment, 2 (2014) 20-26.

Google Scholar

[2] J. Cazenave, Sur le compromis rigidité/durabilité du Polyéthylène Haute Densité en relation avec la structure de chaîne, la microstructure et la topologie moléculaire issues de la cristallisation, Thèse de doctorat, INSA de Lyon, 2005.

DOI: 10.4000/trajectoires.6468

Google Scholar

[3] O. Hehn, Analyse expérimentale et simulation thermomécanique du soudage bout à bout de tubes de polyethylene, Thèse de doctorat, École Nationale Supérieure des Mines de Paris, 2006.

Google Scholar

[4] K. Hachellaf, M. Meddah, B. OuldChikh, A. Lounis, Mechanical behavior analysis of a friction Stir welding (FSW) for welded joint applied to polymer materials, Frattura ed Integrità Strutturale, 13 (2019) 459-467.

DOI: 10.3221/igf-esis.47.36

Google Scholar

[5] A. Lounis, B. Ould Chikh, M. Meddah,L. Gueraiche, K. Hachellaf, Parametric Study of the mechanical behavior of FSSW welded polymer plates using a new form of welding tool, Defect and Diffusion Forum , 389 (2018) 205-215.

DOI: 10.4028/www.scientific.net/ddf.389.205

Google Scholar

[6] D. Benyerou, B Ould Chikh, H Khellafi, M. Meddah, Parametric study of friction stir spot welding (FSSW) for polymer materials case of High Density Polyethylene sheets: experimental and numerical study, Frattura ed Integrità Strutturale, 55 (2021) 145-158.

DOI: 10.3221/igf-esis.55.11

Google Scholar

[7] M. Kaid, M. Zemri, Comparison between FSW Welding and Butt Welding for High Density Polyethylene (HDPE), Conference Article, ACNDT, 2016.

Google Scholar

[8] B. Bouchouicha, M. Zemri, A. Zaim, B. Ould Chikh, Estimation of the energy of crack propagation in different zones of a welded joint by the local technique, International Journal of Fracture 192 (2015) 107–116.

DOI: 10.1007/s10704-015-9989-1

Google Scholar

[9] M. Meddah, B. Ould Chikh, A. Benhamena, M. Benguediab, B. Bouchouicha, Effect of the mechanical properties and mode loading on the mechanical behaviour of weldment: a numerical analysis, Materials Research, 16 (2013) 853-859.

DOI: 10.1590/s1516-14392013005000064

Google Scholar

[10] A. Bensari, B. Ould Chikh, B. Bouchouicha, M. Tirenifi, Numerical simulation of a steel weld joint and fracture mechanics study of a Compact Tension Specimen for zones of weld joint, Frattura ed Integrità Strutturale, 47 (2019) 17-29.

DOI: 10.3221/igf-esis.48.34

Google Scholar

[11] M. Tirenifi, B. Ould Chikh, B. Bouchouicha, A. Bensari, Numerical comparison of cruciform weld and butt weld simulation and a study of fracture mechanics on two types of welds, Frattura ed Integrità Strutturale, 48 (2019) 357-369.

DOI: 10.3221/igf-esis.48.34

Google Scholar

[12] A.B. Moulai, B. Ould Chikh, H.M. Meddah, B. Bouiadjra, Plasticity Effect on the Mechanical Behavior of an Amorphous Polymer, International Journal of Engineering Research in Africa, 43 (2019) 1-19.

DOI: 10.4028/www.scientific.net/jera.43.1

Google Scholar

[13] A.B. Moulay, B. Bouiadjera, B. Ould Chikh, M. Elmeguenni, The effect of the plastic instability on the behavior of an amorphous polymer, Mathematical Modelling of Engineering Problems, 4 (2017) 53-58.

DOI: 10.18280/mmep.040111

Google Scholar

[14] H. Khellafi, H.M. Meddah, B. Ould Chikh, B. Bouchouicha, M. Benguediab, M. Bendouba, Experimental and Numerical Analysis of the Polyvinyl Chloride (PVC) Mechanical Behavior Response, Computers, Materials & Continua, 50 (2015) 31-45.

Google Scholar

[15] A.N. Zaim, B. Bouchouicha, H.M. Meddah, B. Ould Chikh, The Stress Triaxiality Effect under Large Plastic Deformation of a Polybutylene Terephthalate (PBT), International Journal of Engineering Research in Africa, 34 (2018) 13-28.

DOI: 10.4028/www.scientific.net/jera.34.13

Google Scholar

[16] A.N. Zaim, B. Ould Chikh, B. Bouchouicha, Thermo-Mechanical Characterization of a Thermoplastic Copolyetherester (TPC): Experimental Investigation. Fibers and Polymers, 19 (2018) 734-741.

DOI: 10.1007/s12221-018-7455-1

Google Scholar

[17] R. Kumar, R. Singh, I. Ahuja, R. Penna, L. Feo, Weldability of thermoplastic materials for friction stir welding, A state of art review and future applications, Composites Part B: Engineering, 137 (2018) 1-15.

DOI: 10.1016/j.compositesb.2017.10.039

Google Scholar

[18] A. Zafar, M. Awang, R. Khan, Friction stir welding of polymers: An overview, 2nd International Conference on Mechanical, Manufacturing and Process Plant Engineering, 2017.

DOI: 10.1007/978-981-10-4232-4_2

Google Scholar

[19] M.K. Bilici, A. Yukler, Effects of welding parameters on friction stir spot welding of High density polyethylene sheets, Materials and Design, 33 (2012) 545-550.

DOI: 10.1016/j.matdes.2011.04.062

Google Scholar

[20] W.M. Thomas, E.D. Nicholas, J.C. Need-ham, M.G. Murch, P. Templesmith, and C.J. Dawes, Friction Stir welding, Patent. Application No. PCT/GB92/02203 and Great Britain Patent Application No. 9125978. 8, 1991.

Google Scholar

[21] Seth R. Strand, effects of friction stir welding on polymer microstructure, a Thesis, Brigham Young University, 2004.

Google Scholar

[22] Samir Ali Amin, Mohannad Yousif Hanna, Alhamza Farooq Mohamed, Experimental Study the Effect of Tool Design on the Mechanical Properties of Bobbin Friction Stir Welded 6061-T6 Aluminum Alloy, Al-Khwarizmi Engineering Journal, 14 (2018) 1- 11.

DOI: 10.22153/kej.2018.01.003

Google Scholar

[23] L.E. Murr, A review of FSW research on dissimilar metal and alloy systems, Journal of Material Engineering and Performance, 19 (2010) 1071-1089.

Google Scholar

[24] D. Devaiah, K. Kishore, and P. Laxminarayana, Effect of Welding Speed on Mechanical Properties of Dissimilar Friction Stir Welded AA5083-H321 and AA6061-T6 Aluminum Alloys, International Journal of Advanced Engineering Research and Science, 4 (2017) 22-28.

DOI: 10.22161/ijaers.4.3.4

Google Scholar

[25] R.S. Mishra, Z.Y. MA, Friction Stir welding and processing, Materials Science and Engineering, 50 (2005)1-78.

Google Scholar

[26] Parth Sas, Sushama Kadam, Yamini Chavhan, Minal Parate, Omkar Kotulkar, Vijaykumar S. Jatti, Friction Stir Welding of Polymer, international journal of advance research in science engineering, 6 (2017) 907-922.

Google Scholar

[27] Mohammad K. Sued and Dirk J. Pons, Dynamic Interaction between Machine, Tool, and Substrate in Bobbin Friction Stir Welding, International Journal of Manufacturing Engineering 2016 (2016)1-14.

DOI: 10.1155/2016/8697453

Google Scholar

[28] T. M Nelson, Friction Stir welding of polymeric materials. U.S. Patent 6811632, USA 2004.

Google Scholar

[29] J.Y. Sheikh-Ahmad, Dima S. Ali, Suleyman Deveci, Fahad Almaskari, Firas Jarrar, Friction Stir Welding of High Density Polyethylene Carbon Black Composite, Journal of Materials Processing Technology, 264 (2019) 402-413.

DOI: 10.1016/j.jmatprotec.2018.09.033

Google Scholar

[30] Z. Kiss, T. Czigány, Microscopic analysis of the morphology of seams in friction stir welded polypropylene, Express Polymer Letters, 6 (2012) 54–62.

DOI: 10.3144/expresspolymlett.2012.6

Google Scholar

[31] Y. Bozkurt, The Optimization of Friction Stir welding process parameters to achieve maximum tensile strength in polyethylene sheets, Materials and Design, 35 (2012) 440-445.

DOI: 10.1016/j.matdes.2011.09.008

Google Scholar

[32] S. Eslami, T. Ramos, P.J. Tavares, P.M.G.P. Moreira, Effect of friction stir welding parameters with newly developed tool for lap joint of dissimilar polymers. Procedia Engineering, 114 (2015) 199 – 207.

DOI: 10.1016/j.proeng.2015.08.059

Google Scholar

[33] S. Hoseinlaghab, S.S. Mirjavadi, N. Sadeghian, I. Jalili, I., M. Azarbarmas, M.K. Givi, Influences of welding parameters on the quality and creep properties of friction stir welded polyethylene plates, Materials and Design, 67 (2015) 369–378.

DOI: 10.1016/j.matdes.2014.11.039

Google Scholar

[34] E. Azarsa, A. Mostafapour, Experimental investigation on flexural behavior of friction stir welded high density polyethylene sheets, Journal of Manufacturing Processes, 16 (2014) 149-155.

DOI: 10.1016/j.jmapro.2013.12.003

Google Scholar

[35] H.I. Khalaf, R. Al-Sabur, M. Demiral, J.Tomków, J. Łabanowski, M. E. Abdullah and H. A. Derazkola, The Effects of Pin Profile on HDPE Thermomechanical Phenomena during FSW, Polymers 14 (2022) 4632.

DOI: 10.3390/polym14214632

Google Scholar

[36] S. Muñoz, Friction Stir Welding FSW of Gas Polyethylene Pipes, Proceedings of the 6th Pan American Conference for NDT, Cartagena, Colombia, 2015.

Google Scholar

[37] E. Anna Squeo, G. Bruno, A. Guglielmotti, F. Quadrini, Friction Stir Welding of Polyethylene Sheets. The Annals of "DUNĂREA DE JOS" University of Galati Fascicle V, Technologies in Machine Building (2009) 241- 246.

Google Scholar

[38] Y. Yan, Y. Shen, B. Lan, J. Gao, Influences of friction stir welding parameters on morphology and tensile strength of high density polyethylene lap joints produced by double-pin tool, Journal of Manufacturing Processes 28 (2017) 33–40.

DOI: 10.1016/j.jmapro.2017.05.019

Google Scholar

[39] Djilali Bouha, Influence de la géométrie de l'outil sur le soudage par friction malaxage d'un PEHD: Étude expérimentale, thèse, Université Mustapha Stambouli Mascara, 2013.

Google Scholar

[40] A. Zafar, M. Awang, S. Khan, S. Emamian, Visual Analysis of Material Flow During Friction Stir Welding of Nylon-6, ARPN Journal of Engineering and Applied Sciences, 11 (2016) 4186-4190.

Google Scholar

[41] A. Arici, T. Sinmaz, Effect of Double Passes of the Tool on Friction Stir Welding of Polyethylene, Journal of Materials Science, 40 (2005) 3313-3316.

DOI: 10.1007/s10853-005-2709-x

Google Scholar

[42] A. Arici, S. Selale, Effects of Tool Tilt Angle on Tensile Strenght and Fracture Locations of Friction Stir Welding of Polyethylene, Science and Technology of Welding and Joining, 12 (2007) 536-539.

DOI: 10.1179/174329307x173706

Google Scholar

[43] A. Arici, M. Seno, Friction Stir Spot Welding of Polypropylene, Journal of Reinforced Plastics and Composites, 27 (2008) 2001-2004.

DOI: 10.1177/0731684408089134

Google Scholar

[44] C. Yang, D.R. Ni, P. Xue, B.L. Xiao, W. Wang, K.S. Wang, Z.Y. Ma, A comparative research on bobbin tool and conventional friction stir welding of Al-Mg-Si alloy plates, Materials Characterization 145 (2018) 20–28.

DOI: 10.1016/j.matchar.2018.08.027

Google Scholar

[45] Kishan Fuse, Vishvesh Badheka, Bobbin tool friction stir welding: a review, Science and Technology of Welding and Joining, 24 (2018) 1–28.

DOI: 10.1080/13621718.2018.1553655

Google Scholar

[46] R.S. Mishra, De Partha Sarathi, N. Kumar, Friction Stir Welding and Processing, Springer International Publishing, Switzerland, 2014.

Google Scholar

[47] J. Hilgert, H. Schmidt, J. F. dos Santos, Bobbin Tool FSW - A Moving Geometry Model, Excerpt from the Proceedings of the COMSOL, Milan, 2009.

Google Scholar

[48] S. Mohammad Kamil, Fixed bobbin friction stir welding of marine grade aluminium. A Thesis, University of Canterbury, 2015.

Google Scholar

[49] P L. Threadgill, M M Z. Ahmed, J P. Martin, J G. Perrett and B P. Wynne, The use of bobbin tools for friction stir welding of aluminium alloys, Materials Science Forum, 642 (2010) 1179-1184.

DOI: 10.4028/www.scientific.net/msf.638-642.1179

Google Scholar

[50] J. Hilgert, Knowledge Based Process Development of Bobbin Tool Friction Stir Welding, Thesis, Technical University of Hamburg-Harburg, 2012.

Google Scholar

[51] Dj. Bouha, H. Khellafi, B. Ould Chikh, H. M. Meddah, A. Kaou, Effect of Tool Design on the Mechanical Properties of Bobbin Friction Stir Welded High-Density polyethylene Sheets, Experimental study, International Journal of Engineering Research in Africa, 61(2022) 95-114.

DOI: 10.4028/p-8c4i2j

Google Scholar

[52] Information on https://www.iso.org/standard/62421.html

Google Scholar

[53] LI Jing-yong, Zhou Xiao-ping, Dong Chun-lin, Dong Ji-hong, Temperature Fields in 6082 Aluminum Alloy Samples Bobbin-Tool Friction Stir Welded, Journal of Aeronautical Materials, 33 (2013) 36-40.

Google Scholar

[54] L. Alimi, W. Ghabeche, W. Chaoui, K. Chaoui, Mechanical properties study in extruded HDPE-80 pipe wall used for natural gas distribution , Matériaux & Techniques, 100 (2011) 79-86.

DOI: 10.1051/mattech/2012004

Google Scholar

[55] S.R. Bekkouche, K. Chaoui, Caractérisation et modélisation des deformations résiduelles dans les tubes enpolyéthylène haute densité de transport de gaz, 21ème Congrès Français de Mécanique, Bordeaux, 2013.

Google Scholar

[56] W. Ghabeche, K. Chaoui, Z. azari, A. Chateauneuf, Surface Degradation and crystallinity changes in HDPE-100 pipe subjected to chemical aggressive environments, French Congress of Mechanics, 2013.

Google Scholar

[57] B. Bouchouicha, M. Zemri, A. Ghazi, M. Mazari, M. Benguediab, A. Imad, Analyse du comportement mécanique global d'un assemblage par soudage FSW, IC-WNDT-MI'12, Oran 2012.

Google Scholar

[58] A.Kh. Shaov, A.M. Kharaev and T.A. Borukaev, Study of Influence of Character Aromatic Bisphenol Oligoketones Based on Physical and Mechanical High Density Polyethylene, Materials Science Forum, 935( 2018) 108-113.

DOI: 10.4028/www.scientific.net/msf.935.108

Google Scholar

[59] Thanh Loan Nguyen, Approche multi-échelles dans les matériaux polymères : de la caractérisation nanométrique aux effets d'échelles, Thèse de doctorat, Université de Technologie de Compiègne, 2014.

Google Scholar

[60] He Xiaocong, Gu Fengshou, Andrew Ball, A review of numerical analysis of friction stir welding, Progress in Materials Science, 65(2014) 1–66.

DOI: 10.1016/j.pmatsci.2014.03.003

Google Scholar