Effective Penetration Depth Investigation for Frank Type Dislocation (Deflected TSDs/TMDs) on Grazing Incidence Synchrotron X-Ray Topographs of 4H-SiC Wafers

Article Preview

Abstract:

In 4H-SiC crystals, Frank type dislocations are created through the deflection of threading screw/mixed dislocations onto the basal plane. Grazing-incidence X-ray topographs are often used to evaluate the density of such dislocations and a knowledge of the effective penetration depth is therefore essential. In this study, a systematic analysis is performed to investigate the effective penetration depth, which is the depth from which contrast from the dislocation is still discernible. This is achieved by comparison between observed topographic images and detailed ray tracing simulations. Simulations shows no significant contrast difference between a deflected TSD and a deflected TMD with the same line direction since the large c component is the dominant contributor to the effective misorientation, whereas the effect of a component is rather negligible. Therefore, this effective penetration depth study uses ray tracing simulation images of deflected TSDs with photoelectric absorption applied to compare with all topographically observed Frank type dislocations. Analysis first reveals that the effective penetration depth varies with the line direction of a Frank type dislocation, and the effective penetration depth is significantly deeper compared to that of a BPD. Further, the effective penetration depth on ray tracing simulations with absorption applied matches well with experimentally measured depth. The study also evaluated the effectiveness of a simplified model based on an approximate expression for the effective misorientation of a dislocation modulated by photoelectric absorption. This was also found to yield satisfactory results and can be used as a universal method to determine the effective penetration depth for Frank type dislocations with c component of Burgers vector.

You might also be interested in these eBooks

Info:

* - Corresponding Author

[1] H. Das, S. Sunkari, J. Justice, H. Pham, K.S. Park, Effect of defects in silicon carbide epitaxial layers on yield and reliability, Mater. Sci. Forum 963 (2019) 284-287.

DOI: 10.4028/www.scientific.net/msf.963.284

Google Scholar

[2] T. Kimoto, A. Iijima, H. Tsuchida, T. Miyazawa, T. Tawara, A. Otsuki, T. Kato, Y. Yonezawa, Understanding and reduction of degradation phenomena in SiC power devices, 2017 IEEE International Reliability Physics Symposium (IRPS) (2017) 2A-1.1-2A-1.7.

DOI: 10.1109/irps.2017.7936253

Google Scholar

[3] M. Dudley, F. Wu, H. Wang, S. Byrappa, B. Raghothamachar, G. Choi, S. Sun, E.K. Sanchez, D. Hansen, R. Drachev, S.G. Mueller, M.J. Loboda, Stacking faults created by the combined deflection of threading dislocations of Burgers vector c and c+a during the physical vapor transport growth of 4H–SiC, Appl. Phys. Lett. 98 (2011) 232110..

DOI: 10.1063/1.3597226

Google Scholar

[4] F.Z. Wu, M. Dudley, H.H. Wang, S.Y. Byrappa, B. Raghothamachar, E. Sanchez, G.Y. Chung, D.M. Hansen, S.G. Mueller, M.J. Loboda, The Nucleation and Propagation of Threading Dislocations with C-Component of Burgers Vector in PVT-Grown 4H-SiC, Mater. Sci. Forum 740-742 (2013) 217-220.

DOI: 10.4028/www.scientific.net/msf.740-742.217

Google Scholar

[5] M. Dudley, H.H. Wang, F.Z. Wu, S.Y. Byrappa, B. Raghothamachar, G. Choi, E. Sanchez, D.M. Hansen, R. Drachev, S.G. Mueller, M.J. Loboda, Formation Mechanism of Stacking Faults in PVT 4H-SiC Created by Deflection of Threading Dislocations with Burgers Vector c+a, Mater. Sci. Forum, 679-680 (2011) 269-272.

DOI: 10.4028/www.scientific.net/msf.679-680.269

Google Scholar

[6] H. Tsuchida, M. Ito, I. Kamata, M. Nagano, Formation of extended defects in 4H-SiC epitaxial growth and development of a fast growth technique, Phys. Status Solidi B 246 (2009) 1553-1568.

DOI: 10.1002/pssb.200945056

Google Scholar

[7] Q.Y. Cheng, H.Y. Peng, S.S. Hu, Z.Y. Chen, Y.F. Liu, Ray-Tracing Simulation Analysis of Effective Penetration Depths on Grazing Incidence Synchrotron X-Ray Topographic Images of Basal Plane Dislocations in 4H-SiC Wafers, Mater. Sci. Forum 1062 (2022) 366-370.

DOI: 10.4028/p-2kzz01

Google Scholar

[8] X.R. Huang, M. Dudley, W.M. Vetter, W. Huang, W. Si, C.H. Carter Jr, Superscrew dislocation contrast on synchrotron white-beam topographs: an accurate description of the direct dislocation image, J. Appl. Cryst. 32 (1999) 516-524.

DOI: 10.1107/s0021889899002939

Google Scholar

[9] H. Peng, T. Ailihumaer, F. Fujie, Z. Chen, B. Raghothamachar, and M. Dudley, Influence of surface relaxation on the contrast of threading edge dislocations in synchrotron X-ray topographs under the condition of g . b = 0 and g . b x l = 0, J. Appl. Cryst. 54 (2021) 439-443.

DOI: 10.1107/s160057672100025x

Google Scholar

[10] F. Fujie, H. Peng, T. Ailihumaer, B. Raghothamachar, M. Dudley, S. Harada, M. Tagawa, and T. Ujihara, Synchrotron X-ray topographic image contrast variation of screw-type basal plane dislocations located at different depths below the crystal surface in 4H-SiC, Acta Mater. 208 (2021) 116746.

DOI: 10.1016/j.actamat.2021.116746

Google Scholar

[11] T. Ailihumaer, H. Peng, F. Fujie, B. Raghothamachar, M. Dudley, S. Harada, and T. Ujihara, Surface relaxation and photoelectric absorption effects on synchrotron X-ray topographic images of dislocations lying on the basal plane in off-axis 4H-SiC crystals, Mater. Sci. Eng.: B 271 (2021) 115281.

DOI: 10.1016/j.mseb.2021.115281

Google Scholar

[12] J. Guo, Y. Yang, F. Wu, J. Sumakeris, R. Leonard, O. Goue, B. Raghothamachar, M. Dudley, Direct Determination of Burgers Vectors of Threading Mixed Dislocations in 4H-SiC Grown by PVT Method, J. Electron. Mater. 45 (2016) 2045-2050.

DOI: 10.1007/s11664-015-4317-0

Google Scholar

[13] Q. Cheng, T. Ailihumaer, Y. Liu, H. Peng, Z. Chen, B. Raghothamachar, M. Dudley, Characterization of Dislocations in 6H-SiC Wafer Through X-Ray Topography and Ray-Tracing Simulations, J. Electron. Mater. 50 (2021) 4104-4117.

DOI: 10.1007/s11664-021-08888-7

Google Scholar

[14] T. Ailihumaer, H. Peng, Y. Liu, Q. Cheng, Z. Chen, S. Hu, B. Raghothamachar, M. Dudley, Analysis of Dislocation Contrast in Synchrotron Grazing-incidence X-ray Topographs and Ray-tracing Simulation in Off-axis 4H-SiC Crystals, ECS Trans. 104 (2021) 157-169.

DOI: 10.1149/10407.0157ecst

Google Scholar

[15] B. Raghothamachar, Y. Liu, H. Peng, T. Ailihumaer, M. Dudley, F.S. Shahedipour-Sandvik, K.A. Jones, A. Armstrong, A.A. Allerman, J. Han, H. Fu, K. Fu, Y. Zhao, X-ray topography characterization of gallium nitride substrates for power device development, J. Cryst. Growth, 544 (2020) 125709.

DOI: 10.1016/j.jcrysgro.2020.125709

Google Scholar

[16] T. Zhou, B. Raghothamachar, F. Wu, M. Dudley, Grazing Incidence X-ray Topographic Studies of Threading Dislocations in Hydrothermal Grown ZnO Single Crystal Substrates, MRS Online Proc. Libr. 1494 (2012) 121-126.

DOI: 10.1557/opl.2013.261

Google Scholar

[17] M. Dudley, X.R. Huang, W. Huang, Assessment of orientation and extinction contrast contributions to the direct dislocation image, J. Phys. D: Appl. Phys. 32 (1999) A139-A144.

DOI: 10.1088/0022-3727/32/10a/329

Google Scholar

[18] C. Schneider, W. Rasband, K. Eliceiri, NIH Image to ImageJ: 25 years of image analysis, Nat. Methods 9 (2012) 671-675.

DOI: 10.1038/nmeth.2089

Google Scholar

[19] A. Authier, Contrast of Dislocation Images in X-Ray Transmission Topography, Adv. X-Ray Anal. 10 (1966) 9-31.

DOI: 10.1154/s0376030800004250

Google Scholar

[20] M. Dudley, J. Wu, and G.-D. Yao, Determination of penetration depths and analysis of strains in single crystals by white beam synchrotron X-ray topography in grazing Bragg-Laue geometries, Nucl. Inst. & Meth. B40/41 (1989) 388-392.

DOI: 10.1016/0168-583x(89)91005-7

Google Scholar

[21] H. Peng, T. Ailihumaer, Y. Liu, B. Raghothamachar, X. Huang, L. Assoufid, and M. Dudley, Dislocation contrast on X-ray topographs under weak diffraction conditions, J. Appl. Crystallogr. 54 (2021) 1225-1233.

DOI: 10.1107/s1600576721006592

Google Scholar