Numerical Investigation of the Magnetohydrodynamic Mixed Convection inside an Extended Curved Duct in the Presence of a Nanofluid of Different Metallic Oxides Nanoparticles

Article Preview

Abstract:

The numerical work presented in this paper focuses on the influence of the magnetic field and the nanoparticles metallic nature on the hydrodynamic and thermal behavior of a nanofluid flowing in an extended curved duct. It deals with a semi-toroidal curved duct with an expanded circular section. The narrowed part of this duct from which the nanofluid enters with a cold temperature, is considered to be thermally insulated. However, the extended part is kept at a constant hot temperature. The nanoparticles used in the present study respectively are Alumina (Al2O3), copper oxide (CuO) and iron trioxide (Fe3O4). In this study, the effects of inertia, buoyancy and Lorentz forces as well as the metallic nature of the nanoparticles suspended in the pure water have been highlighted on the thermal, hydrodynamic and economic levels. The study is based on the resolution of the classical monophasic equations governing the non-isothermal flow of nanofluids by the use of finite element method, namely: the mass, momentum and energy equations. The obtained results have shown that the buoyancy and inertia forces strongly favor the global heat exchange rate. Moreover, the magnetic force acts negatively on these thermal exchanges. Furthermore, the CuO nanoparticles have demonstrated a better heat transfer rate, approximately 7% higher than that of pure water. Nevertheless, according to the economic needs, we suggest we suggest using alumina nanoparticles, as their transfer rate is comparable to that of CuO nanoparticles. It should be noted, that this study provides important insights for many industrial applications where the curved ducts are strongly presented.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

107-132

Citation:

Online since:

January 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P. Rudolf, M. Desová, Flow characteristics of curved ducts, Applied and Computational Mechanics, (1) (2007) 255 – 264.

Google Scholar

[2] M.Yasuo, N. Wataru, Study on forced convective heat transfer in curved pipes :(1st report, laminar region), International Journal of Heat and Mass Transfer 8(1) (1965) 67-82.

DOI: 10.1016/0017-9310(65)90098-0

Google Scholar

[3] W. R. Dean, XVI. Note on the motion of fluid in a curved pipe, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 4(20) (1927) 208-223.

DOI: 10.1080/14786440708564324

Google Scholar

[4] W. R. Dean, Fluid motion in a curved channel. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 121(787) (1928) 402-420.

DOI: 10.1098/rspa.1928.0205

Google Scholar

[5] W. R. Dean, J. M. Hurst, Note on the motion of fluid in a curved pipe, Mathematika 6(1) (1959) 77-85.

DOI: 10.1112/s0025579300001947

Google Scholar

[6] G. S. Williams, C. W. Hubbell , G. H.Fenkell, Experiments at Detroit, Mich., on the effect of curvature upon the flow of water in pipes, Transactions of the American Society of Civil Engineers 47(1) (1902) 1-196.

DOI: 10.1061/taceat.0001496

Google Scholar

[7] J.H. Grindley, A. H. Gibson, On the frictional resistances to the flow of air through a pipe, Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 80(536) (1908) 114-139.

DOI: 10.1098/rspa.1908.0006

Google Scholar

[8] J. Eustice, Flow of water in curved pipes, Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 84(568) (1910) 107-118.

DOI: 10.1098/rspa.1910.0061

Google Scholar

[9] H. Ito, (1951) Theory on laminar flow through curved pipes of elliptic and rectangular cross-section, Rep. Inst. High Speed Mech., Tohoku Univ. Sendai Japan 1(1951) 1-16.

Google Scholar

[10] T.W. Gyves, T.F. Irvine Jr, Laminar conjugated forced convection heat transfer in curved rectangular channels, International journal of heat and mass transfer 43(21) (2000)3953-3964.

DOI: 10.1016/s0017-9310(00)00041-7

Google Scholar

[11] L. Wang, K. C. Cheng, Flow transitions and combined free and forced convective heat transfer in rotating curved channels: the case of positive rotation, Physics of Fluids 8(6) (1996) 1553-1573.

DOI: 10.1063/1.868930

Google Scholar

[12] G. Yee, R. Chilukuri, J. A. C. Humphrey, Developing flow and heat transfer in strongly curved ducts of rectangular cross section, (1980) 285-291.

DOI: 10.1115/1.3244275

Google Scholar

[13] H. K. Choi, S. O. Park, Mixed convection flow in curved annular ducts, International journal of heat and mass transfer, 37(17) (1994) 2761-2769.

DOI: 10.1016/0017-9310(94)90393-x

Google Scholar

[14] S. R. N. M. Yanase, R. N. Mondal, Y. Kaga, Numerical study of non-isothermal flow with convective heat transfer in a curved rectangular duct, International Journal of Thermal Sciences 44(11) (2005) 1047-1060.

DOI: 10.1016/j.ijthermalsci.2005.03.013

Google Scholar

[15] R. N. Mondal, Y. Kaga, T. Hyakutake, S. Yanase, Effects of curvature and convective heat transfer in curved square duct flows (2006) 1013-1022.

DOI: 10.1115/1.2236131

Google Scholar

[16] Chandratilleke, T. T., N. Nadim, R. Narayanaswamy, Vortex structure-based analysis of laminar flow behaviour and thermal characteristics in curved ducts, International Journal of Thermal Sciences 59(2012) 75-86.

DOI: 10.1016/j.ijthermalsci.2012.04.014

Google Scholar

[17] R. N. Mondal, M. S. Islam, M. K. Uddin, Unsteady solutions with convective heat transfer through a curved duct flow, Procedia Engineering 56 (2013) 141-148.

DOI: 10.1016/j.proeng.2013.03.100

Google Scholar

[18] M. S. Hasan, R. K. Chanda, R. N. Mondal, G. Lorenzini, Effects of rotation on unsteady fluid flow and forced convection in the rotating curved square duct with a small curvature. Facta Universitatis, Series: Mechanical Engineering 20(2) (2022) 255-278.

DOI: 10.22190/fume210129041a

Google Scholar

[19] A. Ahuja, Augmentation of heat transport in laminar flow of polystyrene suspension I. Experiments and results, J. Appl. Phys Volume 46 (1975) 3408-3416.

DOI: 10.1063/1.322107

Google Scholar

[20] V. Perarasu, P. Arivazhagan, , P.Sivashanmugam, Experimental and CFD Heat Transfer Studies of Al2O3-Water Nanofluid in a Coiled Agitated Vessel Equipped with Propeller, Chinese Journal of Chemical Engineering 21(11) (2013) 1232-243.

DOI: 10.1016/s1004-9541(13)60579-0

Google Scholar

[21] S. Choi, J. A. Eastman, Enhancing thermal conductivity of fluids with nanoparticles, in: D.A. 309 Siginer, H.P. Wang (Eds.), Developments and Applications of Non-Newtonian 310 Flows, 231(66) (1995) 99–105.

Google Scholar

[22] Y. Xuan, W. Roetzel, Conceptions for heat transfer correlation of nanofluids. International Journal of heat and Mass transfer, 43(19) (2003) 3701-3707.

DOI: 10.1016/s0017-9310(99)00369-5

Google Scholar

[23] V. Bianco, O. Manca, S. Nardini, K. Vafai, Heat Transfer Enhancement with Nanofluids, 1e éd. New York: CRC Press Taylor & Francis Group (2015).

DOI: 10.1201/b18324

Google Scholar

[24] E. Abu-Nada, Z. Masoud, A. Hijazi, Natural convection heat transfer enhancement in horizontal concentric annuli using nanofluids, International Communications in Heat and Mass Transfer, 35(5) (2008)657-665

DOI: 10.1016/j.icheatmasstransfer.2007.11.004

Google Scholar

[25] L.-C. Shang, L.-C. Zhong, Heat Transfer Due to Laminar Natural Convection of Nanofluids: Theory and Calculation, Gewerbestrasse, Switzerland: Springer Nature Switzerland AG (2019).

DOI: 10.1007/978-3-319-94403-6

Google Scholar

[26] A. Mokhefi, M. Bouanini, M. Elmir, Y. Guettaf, P. Spiteri, Numerical investigation of mixed convection in an anchor-stirred tank filled with an Al2O3-water nanofluid, Chemical Papers 76(2) (2022) 967-985.

DOI: 10.1007/s11696-021-01914-2

Google Scholar

[27] A. Mokhefi, M. Bouanini, M. Elmir, P. Spiteri, Effect of an anchor geometry on the hydrodynamic characteristics of a nanofluid in agitated tank, In Defect and Diffusion Forum (Vol. 409 (2021). 179-193). Trans Tech Publications Ltd.

DOI: 10.4028/www.scientific.net/ddf.409.179

Google Scholar

[28] M.E. Haque, M.S. Hossain, H.M. Ali, Laminar forced convection heat transfer of nanofluids inside non-circular ducts, A review. Powder Technology 378(2021) 808-830.

DOI: 10.1016/j.powtec.2020.10.042

Google Scholar

[29] E. Abu-Nada, A.Chamkha, Mixed convection flow in a lid-driven inclined square enclosure filled with a nanofluid, European Journal of Mechanics B/Fluids Volume 29(2010) p.472–482.

DOI: 10.1016/j.euromechflu.2010.06.008

Google Scholar

[30] E.Aminian, H.Moghadasi, H. Saffari, H.Magnetic field effects on forced convection flow of a hybrid nanofluid in a cylinder filled with porous media: a numerical study, Journal of Thermal Analysis and Calorimetry 141 (2020)  2019-2031.

DOI: 10.1007/s10973-020-09257-y

Google Scholar

[31] X. Liu, D.Toghraie, M. Hekmatifar, O. A. Akbari, A. Karimipour, M. Afrand, Numerical investigation of nanofluid laminar forced convection heat transfer between two horizontal concentric cylinders in the presence of porous medium, Journal of Thermal Analysis and Calorimetry 141 (2020) 2095-2108.

DOI: 10.1007/s10973-020-09406-3

Google Scholar

[32] F. Selimefendigil, H. F. Öztop, Forced convection and thermal predictions of pulsating nanofluid flow over a backward facing step with a corrugated bottom wall, International Journal of Heat and Mass Transfer 110 (2017) 231-247.

DOI: 10.1016/j.ijheatmasstransfer.2017.03.010

Google Scholar

[33] E. Rossi di Schio, A. N. Impiombato, A. Mokhefi, C. Biserni, Theoretical and Numerical Study on Buongiorno's Model with a Couette Flow of a Nanofluid in a Channel with an Embedded Cavity. Applied Sciences 12(15) (2022)7751.

DOI: 10.3390/app12157751

Google Scholar

[34] R. K.Ajeel, K. Sopian, R. Zulkifli, S. N. Fayyadh, A. K. Hilo, Assessment and analysis of binary hybrid nanofluid impact on new configurations for curved-corrugated channel, Advanced Powder Technology 32(10) (2021) 3869-3884.

DOI: 10.1016/j.apt.2021.08.041

Google Scholar

[35] A. Akbarinia, A. Behzadmehr, Numerical study of laminar mixed convection of a nanofluid in horizontal curved tubes, Applied Thermal Engineering 27(8-9) (2007) 1327-1337.

DOI: 10.1016/j.applthermaleng.2006.10.034

Google Scholar

[36] J.Choi, Y. Zhang, Numerical simulation of laminar forced convection heat transfer of Al2O3–water nanofluid in a pipe with return bend, International Journal of Thermal Sciences 55(2012) 90-102.

DOI: 10.1016/j.ijthermalsci.2011.12.017

Google Scholar

[37] S. S. Shah, H. F. Öztop, R. Ul-Haq, N. Abu-Hamdeh, Natural convection process endorsed in coaxial duct with Soret/Dufour effect. International Journal of Numerical Methods for Heat & Fluid Flow 33(1) (2023) 96-119.

DOI: 10.1108/hff-02-2022-0106

Google Scholar

[38] S. AKÇAY, Numerical analysis of hydraulic and thermal performance of Al2O3-water nanofluid in a zigzag channel with central winglets. Gazi University Journal of Science 36(1) (2023) 383-397.

DOI: 10.35378/gujs.1012201

Google Scholar

[39] M. Mahmoodi, A. Sohankar, A. Joulaei, (2023) Investigations of nanofluid flow and heat transfer in a rotating microchannel using single-and two-phase approaches. Numerical Heat Transfer, Part A: Applications 83(2) (2023) 80-115.

DOI: 10.1080/10407782.2022.2083886

Google Scholar

[40] A. Priyanka, Kumar, S. Kumar, S. Kalia, Optimization and correlations development for heat transfer and fluid flow characteristics of ZnO/H2O-ethylene glycol-based nanofluid flow through an inclined ribbed square duct. Numerical Heat Transfer, Part A: Applications (2023) 1-16.

DOI: 10.1080/10407782.2023.2175747

Google Scholar

[41] A. Pordanjani, S. Vahedi, F. Rikhtegar, S. Wongwises, S. Optimization and sensitivity analysis of magneto-hydrodynamic natural convection nanofluid flow inside a square enclosure using response surface methodology, Journal of Thermal Analysis and Calorimetry 135 (2019): 1031-1045.

DOI: 10.1007/s10973-018-7652-6

Google Scholar

[42] F.Bouzit, M. Bouzit, A. Mokhefi, Numerical investigation of the nanoparticles nature effect on the MHD behavior in a square cavity with a metallic obstacle, Metallurgical and Materials Engineering 28(2) (2022) 223-244.

DOI: 10.30544/725

Google Scholar

[43] F. Selimefendigil, H. F. Öztop, Natural convection and entropy generation of nanofluid filled cavity having different shaped obstacles under the influence of magnetic field and internal heat generation, Journal of the Taiwan Institute of Chemical Engineers 56(2015) 42-56

DOI: 10.1016/j.jtice.2015.04.018

Google Scholar

[44] T. Hayat, N. Aslam, A. Alsaedi, M. Rafiq, Numerical study for MHD peristaltic transport of Sisko nanofluid in a curved channel, International Journal of Heat and Mass Transfer 109 (2017) 1281-1288.

DOI: 10.1016/j.ijheatmasstransfer.2017.01.121

Google Scholar

[45] P.A. Bakalis, P.M. Hatzikonstantinou, P. Vafeas, MHD formulations for the liquid metal flow in a curved pipe of circular cross section, Computers & Fluids 119 (2015) 1-12.

DOI: 10.1016/j.compfluid.2015.05.025

Google Scholar

[46] T. Hayat, A. Tanveer, A. Alsaedi, Numerical analysis of partial slip on peristalsis of MHD Jeffery nanofluid in curved channel with, porous space, Journal of Molecular Liquids 224 (2016) 944-953.

DOI: 10.1016/j.molliq.2016.10.057

Google Scholar

[47] N. F. Okechi, S. Asghar, MHD Stokes flow in a corrugated curved channel, Chinese Journal of Physics 71(2021) 38-53.

DOI: 10.1016/j.cjph.2020.11.005

Google Scholar

[48] F. Ahmed, N. S. Akbar, D. Tripathi, Hydro-dynamically and thermally fully developed flow analysis of magneto-hydrodynamic fluid through annular duct. International Journal of Modern Physics B (2023) 2450098.

DOI: 10.1142/s021797922450098x

Google Scholar

[49] M.El-Adawy, H. A. Abdul-Wahhab,A. R. A. Aziz,R. A. Opatola, M. A.Ismael, H. H. Al-Kayiem, Magneto-Hydrodynamic effects on Diesel/CNG bubbly flow enhanced by Fe3O4 Nanoparticles: Experimental and mathematical assessments. Alexandria Engineering Journal 62 (2023) 415-429.

DOI: 10.1016/j.aej.2022.07.042

Google Scholar

[50] S. Hussain, S. E. Ahmed, Unsteady MHD forced convection over a backward facing step including a rotating cylinder utilizing Fe3O4-water ferrofluid, Journal of Magnetism and Magnetic Materials 484 (2019) 356-366.

DOI: 10.1016/j.jmmm.2019.04.040

Google Scholar

[51] Djamila Derbal, Mohamed Bouzit, Fayçal Bouzit. "Effect of the inclination angle of finned cylinder over a BFS on the MHD behavior in the presence of a nanofluid," Metallurgical and Materials Engineering 28(2) (2022) 203-221.

DOI: 10.30544/760

Google Scholar

[52] M. Toumi, M. Bouzit, F. Bouzit, A. Mokhefi, MHD forced convection using ferrofluid over a backward facing step containing a finned cylinder, acta mechanica et automatica 16(1) (2022) 70-81.

DOI: 10.2478/ama-2022-0009

Google Scholar

[53] B. Mliki, M. A. Abbassi, A. Omri, Z. Belkacem, Lattice Boltzmann analysis of MHD natural convection of CuO-water nanofluid in inclined C-shaped enclosures under the effect of nanoparticles Brownian motion, Powder Technology 308 (2017) 70-83.

DOI: 10.1016/j.powtec.2016.11.054

Google Scholar

[54] M. Mokeddem, H.Laidoudi, O.D. Makinde, M. Bouzit, 3D Simulation of incompressible poiseuille flow through 180 curved duct of square cross-section under effect of thermal buoyancy, Periodica Polytechnica Mechanical Engineering 63(4) (2019) 257–269.

DOI: 10.3311/ppme.12773

Google Scholar

[55] H. Brinkman, The viscosity of concentrated suspensions and solutions. J.Chem. Phys, Volume 20 (1952) 571-581.

Google Scholar

[56] J. Maxwell, A Treatise on Electricity and Magnetism. 1e éd. Cambridge: Oxford University Press (1881).

Google Scholar