[1]
A.S. Berman, Laminar flow in channels with porous walls, J. Appl. Phys. 24 (1953), 1232-1235.
Google Scholar
[2]
M. Sheikholeslami, H.R. Ashorynejad, G. Domairry, I. Hashim, Flow and heat transfer of Cu-water nanofluid between a stretching sheet and a porous surface in a rotating system, Journal of Applied Mathematics 2012 (2012), 1-18.
DOI: 10.1155/2012/421320
Google Scholar
[3]
M.A.A. Hamad, I. Pop, A.I. Ismail, Magnetic field effects on free convection flow of a nanofluid past a vertical semi-infinite flat plate, Nonlinear Analysis: Real World Applications 12 (2011), 1338-1346.
DOI: 10.1016/j.nonrwa.2010.09.014
Google Scholar
[4]
L.L. Debruge, L.S. Han, Heat transfer in a channel with a porous wall for turbine cooling application, J. Heat Transfer Trans. ASME 94 (1972), 385-390.
DOI: 10.1115/1.3449956
Google Scholar
[5]
M. Goto, S. Uchida, Unsteady flows in a semi-infinite expanding pipe with injection through the wall, Trans. Jpn. Soc. Aeronaut. Space Sci. 33 (1990), 14-27.
Google Scholar
[6]
S. Dinarvand, M.M. Rashidi, A reliable treatment of a homotopy analysis method for two-dimensional viscous flow in a rectangular domain bounded by two moving porous walls, Nonlinear Anal., Real World Appl. 11 (2010), 1502-1512.
DOI: 10.1016/j.nonrwa.2009.03.006
Google Scholar
[7]
A.S. Dogonchi, D.D. Ganji, Thermal radiation effect on the nano-fluid buoyancy flow and heat transfer over a stretching sheet considering Brownian motion, J. Mol. Liq. 223 (2016), 521-527.
DOI: 10.1016/j.molliq.2016.08.090
Google Scholar
[8]
M. Sheikholeslami, D.D. Ganji, Heat transfer of Cu-water nanofluid flow between parallel plates, Powder Tech., 235 (2013), 873-879.
DOI: 10.1016/j.powtec.2012.11.030
Google Scholar
[9]
A.C. Das, M. S. Alam, Effect of various-shaped Al2O3 and TiO2 nanoparticles on water-based MHD nanofluid flow through convergent-divergent channels. Science & Technology Asia 26(2) (2021), 1-15.
Google Scholar
[10]
M. S. Alam, M.A.H. Khan, M.A. Alim, Irreversibility analysis of variable thermal conductivity MHD radiative flow in porous channel with different nanoparticles, J. of Porous Media, 19(5) (2016), 423-439.
DOI: 10.1615/jpormedia.v19.i5.40
Google Scholar
[11]
M.S. Alam, M.A. Alim, M.A.H. Khan, Entropy Generation Analysis for Variable Thermal Conductivity MHD Radiative Nanofluid Flow through Channel, J. of Applied Fluid Mech., 9 (3) (2016), 1123-1134.
DOI: 10.18869/acadpub.jafm.68.228.24475
Google Scholar
[12]
M.S. Alam, S. Yasmin, A.C. Das, Study on Magnetohydrodynamics Cu-water Nanofluid Flow with Different Shapes of Nanoparticles in a Divergent Channel, GANIT: Journal of Bangladesh Mathematical Society 41(2) (2021), 41-52.
Google Scholar
[13]
S. Sindhu, B. J. Gireesha, Effect of nanoparticle shapes on irreversibility analysis of nanofluid in a microchannel with individual effects of radiative heat flux, velocity slip, and convective heating, Heat Transfer 50 (2021) 876-892.
DOI: 10.1002/htj.21909
Google Scholar
[14]
T. Asifa, P. Anwar, Z. Kumam, K. Sitthithakerngkiet, Significance of shape factor in heat transfer performance of molybdenum-disulfide nanofluid in multiple flow situations; A comparative fractional study, Molecules 26 (2021), 3711.
DOI: 10.3390/molecules26123711
Google Scholar
[15]
A. Bhattad, J. Sarkar, Effects of nanoparticle shape and size on the thermohydraulic performance of plate evaporator using hybrid nanofluids, Journal of Thermal Analysis and Calorimetry 143 (2021), 767-779.
DOI: 10.1007/s10973-019-09146-z
Google Scholar
[16]
M. Sheikholeslami, D. D. Ganji, H. B. Rokni, Nanofluid flow in a semi-porous channel in the presence of uniform magnetic field, Int. J. of Engineering, 26(6) (2013), 653-662.
DOI: 10.5829/idosi.ije.2013.26.06c.10
Google Scholar
[17]
A.S. Dogonchi, D.D. Ganji, Investigation of MHD nanofluid flow and heat transfer in a stretching/shrinking convergent/divergent channel considering thermal radiation, J. Mol. Liq. 220 (2016) 592-603.
DOI: 10.1016/j.molliq.2016.05.022
Google Scholar
[18]
S.K. Das, S.U.S. Choi, W. Yu, T. Pradeep, nanofluids: Science and Technology, Wiley, New York, 2007.
Google Scholar
[19]
A.S. Dogonchi, M. Alizadeh, D.D. Ganji, Investigation of MHD Go-water nanofluid flow and heat transfer in a porous channel in the presence of thermal radiation effect. Advanced Powder Technology, 28(7) (2017), 1815-1825.
DOI: 10.1016/j.apt.2017.04.022
Google Scholar
[20]
M. Mkhatshwa, S. Motsa, P. Sibanda, Overlapping Multi-Domain Spectral Method for Conjugate Problems of Conduction and MHD free Convection Flow of Nanofluids over Flat Plates, Math. Comput. Appl. 24(3) (2019), 75.
DOI: 10.3390/mca24030075
Google Scholar
[21]
E. Abu-Nada, Effects of Variable Viscosity and Thermal Conductivity of CuO-Water Nanofluid on Heat Transfer Enhancement in Natural Convection: Mathematical Model and Simulation, J. Heat Transfer 132(5) (2010), 052401.
DOI: 10.1115/1.4000440
Google Scholar
[22]
H. Padé, Sur Ia représentation approachée d`une function pour des fractions rationnelles. Annales Scientifiques del'École Normalle Supérieure, 9 (1892), 1 - 93.
DOI: 10.24033/asens.378
Google Scholar
[23]
C. Hermite, Sur Ia générealization des fractions continues algébriques. Annali di Mathematica Pura e Applicata, 21 (1893), 289-308.
DOI: 10.1007/bf02420446
Google Scholar
[24]
P. G. Drazin, Y. Tourigny, Numerically study of bifurcation by analytic continuation of a function defined by a power series, SIAM Journal of Applied Mathematics 56 (1996), 1-18.
DOI: 10.1137/s0036139994272436
Google Scholar
[25]
M. A. H. Khan, High-Order Differential Approximants, Journal of Computational and Applied Mathematics 149 (2002), 457-468.
DOI: 10.1016/s0377-0427(02)00561-7
Google Scholar