Study on Shape Effect of MHD Radiative Ag-Water and CuO-Water Nanofluid Flow in a Semi-Porous Channel

Article Preview

Abstract:

This paper studies the two-dimensional unsteady incompressible Ag-water and CuO-water nanofluid flow in a semi-porous expanding-contracting channel in the presence of thermal radiation effect. The continuity equation, Navier-Stokes equation, and energy equation governing the model are transformed into a set of non-dimensional ordinary differential equations using appropriate transformations. These dimensionless governing equations are solved using power series with the aid of the Hermite-Padé approximation method. The influences of physical parameters such as Reynolds number, expansion ratio, solid volume fraction, Prandtl number, Magnetic parameter, and shape factor are depicted in velocity and temperature profiles. Moreover, the average Nusselt number and skin friction coefficient are also investigated with the effect of Reynolds number, solid volume fraction, and expansion ratio. It is observed that the heat transfer rate decreases significantly as the shape factor increases.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

93-106

Citation:

Online since:

January 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A.S. Berman, Laminar flow in channels with porous walls, J. Appl. Phys. 24 (1953), 1232-1235.

Google Scholar

[2] M. Sheikholeslami, H.R. Ashorynejad, G. Domairry, I. Hashim, Flow and heat transfer of Cu-water nanofluid between a stretching sheet and a porous surface in a rotating system, Journal of Applied Mathematics 2012 (2012), 1-18.

DOI: 10.1155/2012/421320

Google Scholar

[3] M.A.A. Hamad, I. Pop, A.I. Ismail, Magnetic field effects on free convection flow of a nanofluid past a vertical semi-infinite flat plate, Nonlinear Analysis: Real World Applications 12 (2011), 1338-1346.

DOI: 10.1016/j.nonrwa.2010.09.014

Google Scholar

[4] L.L. Debruge, L.S. Han, Heat transfer in a channel with a porous wall for turbine cooling application, J. Heat Transfer Trans. ASME 94 (1972), 385-390.

DOI: 10.1115/1.3449956

Google Scholar

[5] M. Goto, S. Uchida, Unsteady flows in a semi-infinite expanding pipe with injection through the wall, Trans. Jpn. Soc. Aeronaut. Space Sci. 33 (1990), 14-27.

Google Scholar

[6] S. Dinarvand, M.M. Rashidi, A reliable treatment of a homotopy analysis method for two-dimensional viscous flow in a rectangular domain bounded by two moving porous walls, Nonlinear Anal., Real World Appl. 11 (2010), 1502-1512.

DOI: 10.1016/j.nonrwa.2009.03.006

Google Scholar

[7] A.S. Dogonchi, D.D. Ganji, Thermal radiation effect on the nano-fluid buoyancy flow and heat transfer over a stretching sheet considering Brownian motion, J. Mol. Liq. 223 (2016), 521-527.

DOI: 10.1016/j.molliq.2016.08.090

Google Scholar

[8] M. Sheikholeslami, D.D. Ganji, Heat transfer of Cu-water nanofluid flow between parallel plates, Powder Tech., 235 (2013), 873-879.

DOI: 10.1016/j.powtec.2012.11.030

Google Scholar

[9] A.C. Das, M. S. Alam, Effect of various-shaped Al2O3 and TiO2 nanoparticles on water-based MHD nanofluid flow through convergent-divergent channels. Science & Technology Asia 26(2) (2021), 1-15.

Google Scholar

[10] M. S. Alam, M.A.H. Khan, M.A. Alim, Irreversibility analysis of variable thermal conductivity MHD radiative flow in porous channel with different nanoparticles, J. of Porous Media, 19(5) (2016), 423-439.

DOI: 10.1615/jpormedia.v19.i5.40

Google Scholar

[11] M.S. Alam, M.A. Alim, M.A.H. Khan, Entropy Generation Analysis for Variable Thermal Conductivity MHD Radiative Nanofluid Flow through Channel, J. of Applied Fluid Mech., 9 (3) (2016), 1123-1134.

DOI: 10.18869/acadpub.jafm.68.228.24475

Google Scholar

[12] M.S. Alam, S. Yasmin, A.C. Das, Study on Magnetohydrodynamics Cu-water Nanofluid Flow with Different Shapes of Nanoparticles in a Divergent Channel, GANIT: Journal of Bangladesh Mathematical Society 41(2) (2021), 41-52.

Google Scholar

[13] S. Sindhu, B. J. Gireesha, Effect of nanoparticle shapes on irreversibility analysis of nanofluid in a microchannel with individual effects of radiative heat flux, velocity slip, and convective heating, Heat Transfer 50 (2021) 876-892.

DOI: 10.1002/htj.21909

Google Scholar

[14] T. Asifa, P. Anwar, Z. Kumam, K. Sitthithakerngkiet, Significance of shape factor in heat transfer performance of molybdenum-disulfide nanofluid in multiple flow situations; A comparative fractional study, Molecules 26 (2021), 3711.

DOI: 10.3390/molecules26123711

Google Scholar

[15] A. Bhattad, J. Sarkar, Effects of nanoparticle shape and size on the thermohydraulic performance of plate evaporator using hybrid nanofluids, Journal of Thermal Analysis and Calorimetry 143 (2021), 767-779.

DOI: 10.1007/s10973-019-09146-z

Google Scholar

[16] M. Sheikholeslami, D. D. Ganji, H. B. Rokni, Nanofluid flow in a semi-porous channel in the presence of uniform magnetic field, Int. J. of Engineering, 26(6) (2013), 653-662.

DOI: 10.5829/idosi.ije.2013.26.06c.10

Google Scholar

[17] A.S. Dogonchi, D.D. Ganji, Investigation of MHD nanofluid flow and heat transfer in a stretching/shrinking convergent/divergent channel considering thermal radiation, J. Mol. Liq. 220 (2016) 592-603.

DOI: 10.1016/j.molliq.2016.05.022

Google Scholar

[18] S.K. Das, S.U.S. Choi, W. Yu, T. Pradeep, nanofluids: Science and Technology, Wiley, New York, 2007.

Google Scholar

[19] A.S. Dogonchi, M. Alizadeh, D.D. Ganji, Investigation of MHD Go-water nanofluid flow and heat transfer in a porous channel in the presence of thermal radiation effect. Advanced Powder Technology, 28(7) (2017), 1815-1825.

DOI: 10.1016/j.apt.2017.04.022

Google Scholar

[20] M. Mkhatshwa, S. Motsa, P. Sibanda, Overlapping Multi-Domain Spectral Method for Conjugate Problems of Conduction and MHD free Convection Flow of Nanofluids over Flat Plates, Math. Comput. Appl. 24(3) (2019), 75.

DOI: 10.3390/mca24030075

Google Scholar

[21] E. Abu-Nada, Effects of Variable Viscosity and Thermal Conductivity of CuO-Water Nanofluid on Heat Transfer Enhancement in Natural Convection: Mathematical Model and Simulation, J. Heat Transfer 132(5) (2010), 052401.

DOI: 10.1115/1.4000440

Google Scholar

[22] H. Padé, Sur Ia représentation approachée d`une function pour des fractions rationnelles. Annales Scientifiques del'École Normalle Supérieure, 9 (1892), 1 - 93.

DOI: 10.24033/asens.378

Google Scholar

[23] C. Hermite, Sur Ia générealization des fractions continues algébriques. Annali di Mathematica Pura e Applicata, 21 (1893), 289-308.

DOI: 10.1007/bf02420446

Google Scholar

[24] P. G. Drazin, Y. Tourigny, Numerically study of bifurcation by analytic continuation of a function defined by a power series, SIAM Journal of Applied Mathematics 56 (1996), 1-18.

DOI: 10.1137/s0036139994272436

Google Scholar

[25] M. A. H. Khan, High-Order Differential Approximants, Journal of Computational and Applied Mathematics 149 (2002), 457-468.

DOI: 10.1016/s0377-0427(02)00561-7

Google Scholar