[1]
C. Liao, R. Cao, W. Wang, W. Hu, G. Zheng, Z. Luo, P. Liu, Photoluminescence properties and energy transfer of NaY(MoO4)2:R (R=Sm3+/Bi3+, Tb3+/Bi3+, Sm3+/Tb3+) phosphors, Mater Res Bull. 97 (2018) 490–496.
DOI: 10.1016/j.ijleo.2017.05.095
Google Scholar
[2]
J.Y. Park, J.W. Chung, S.J. Park, H.K. Yang, Versatile fluorescent CaGdAlO4:Eu3+ red phosphor for latent fingerprints detection, J Alloys Compd. 824 (2020), 153994.
DOI: 10.1016/j.jallcom.2020.153994
Google Scholar
[3]
X. Li, Y. Tian, R. Shen, X. Li, S. Xu, L. Cheng, J. Sun, J. Zhang, X. Zhang, B. Chen, Sol-gel auto-combustion preparation and photoluminescence properties of Er3+-doped K2La2Ti3O10 phosphors with superior thermal luminescence stability, Colloids Surf A Physicochem Eng Asp. 578 (2019), 123595.
DOI: 10.1016/j.colsurfa.2019.123595
Google Scholar
[4]
S. Khan, Y.R. Parauha, D.K. Halwar, S.J. Dhoble, Rare Earth (RE) doped color tunable phosphors for white light emitting diodes, J Phys Conf Ser. 1913 (2021), 012017.
DOI: 10.1088/1742-6596/1913/1/012017
Google Scholar
[5]
Pushpendra, R.K. Kunchala, R. Kalia, B.S. Naidu, Upconversion luminescence properties of NaBi(MoO4)2:Ln3+, Yb3+ (Ln = Er, Ho) nanomaterials synthesized at room temperature, Ceram Int. 46 (2020) 18614–18622.
DOI: 10.1016/j.ceramint.2020.04.173
Google Scholar
[6]
Pushpendra, R.K. Kunchala, S.N. Achary, A.K. Tyagi, B.S. Naidu, Rapid, Room Temperature Synthesis of Eu3+ Doped NaBi(MoO4)2 Nanomaterials: Structural, Optical, and Photoluminescence Properties, Cryst Growth Des. 19 (2019) 3379–3388.
DOI: 10.1021/acs.cgd.9b00267
Google Scholar
[7]
Y. Gan, W. Liu, W. Zhang, W. Li, Y. Huang, K. Qiu, Effects of Gd3+ codoping on the enhancement of the luminescent properties of a NaBi(MoO4)2:Eu3+ red-emitting phosphors, J Alloys Compd. 784 (2019) 1003–1010.
DOI: 10.1016/j.jallcom.2019.01.062
Google Scholar
[8]
R.A. Talewar, S. Mahamuda, A.S. Rao, S. V. Moharil, Intense infrared emission of Er3+ in ZnB2O4 phosphors from energy transfer of Bi3+ by broadband UV excitation, J Lumin. 244 (2022), 118706.
DOI: 10.1016/j.jlumin.2021.118706
Google Scholar
[9]
M. Rico, V. Volkov, C. Cascales, C. Zaldo, Measurement and crystal-field analysis of Er3+ energy levels in crystals of NaBi(MoO4)2 and NaBi(WO4)2 with local disorder, Chemical Physics 279 (2002) 73–86.
DOI: 10.1016/s0301-0104(02)00486-x
Google Scholar
[10]
A. Waśkowska, L. Gerward, J. Staun Olsen, M. Ma̧czka, T. Lis, A. Pietraszko, W. Morgenroth, Low-temperature and high-pressure structural behaviour of NaBi(MoO4)2 - An X-ray diffraction study, J Solid State Chem. 178 (2005) 2218–2224.
DOI: 10.1016/j.jssc.2005.05.001
Google Scholar
[11]
A. Vij, S. Singh, R. Kumar, S. P. Lochab, V. V. S. Kumar, N. Singh, Synthesis and luminescence studies of Ce doped SrS nanostructures, J. Phys. D: Appl. Phys. 42 (2009), 105103.
DOI: 10.1088/0022-3727/42/10/105103
Google Scholar
[12]
Deepali, M. Jayasimhadri, UV-excited blue- to green-emitting Tb3+-activated sodium calcium metasilicate colour tunable phosphor for luminescence devices, Luminescence. 37 (2022) 1465–1474.
DOI: 10.1002/bio.4319
Google Scholar
[13]
V. Singh, G. Lakshminarayana, N. Singh, Structural and luminescence studies of Sm3+:CaLa4Si3O13 phosphors: An orange-emitting component for WLEDs application, Optik (Stuttg). 211 (2020), 164272.
DOI: 10.1016/j.ijleo.2020.164272
Google Scholar
[14]
A.K. Bedyal, V. Kumar, V. Sharma, F. Singh, S.P. Lochab, O.M. Ntwaeaborwa, H.C. Swart, Swift heavy ion induced structural, optical and luminescence modification in NaSrBO3:Dy3+ phosphor, J Mater Sci. 49 (2014) 6404–6412.
DOI: 10.1007/s10853-014-8367-0
Google Scholar
[15]
M. Sheoran, P. Sehrawat, M. Kumar, N. Kumari, V.B. Taxak, S.P. Khatkar, R.K. Malik, Synthesis and crystal structural analysis of a green light-emitting Ba5Zn4Y8O21:Er3+ nanophosphor for PC-WLEDs applications, Journal of Materials Science: Materials in Electronics. 32 (2021) 11683–11694.
DOI: 10.1007/s10854-021-05787-9
Google Scholar
[16]
J. Mao, B. Jiang, P. Wang, L. Qiu, M.T. Abass, X. Wei, Y. Chen, M. Yin, A study on temperature sensing performance based on the luminescence of Eu3+ and Er3+ co-doped YNbO4, Dalton Transactions. 49 (2020) 8194–8200.
DOI: 10.1039/d0dt00215a
Google Scholar
[17]
X. Zhao, J. Wang, L. Fan, Y. Ding, Z. Li, T. Yu, Z. Zou, Efficient red phosphor double-perovskite Ca3WO6 with A-site substitution of Eu3+, Dalton Transactions. 42 (2013) 13502–13508.
DOI: 10.1039/c3dt51029h
Google Scholar
[18]
Y. Ding, Q. Meng, Hydrothermal Synthesis and Luminescent Properties of Spindle-Like NaGd(MoO4)2:Eu3+ Phosphors, Chemistry Select. 4 (2019) 1092–1097.
DOI: 10.1002/slct.201801991
Google Scholar
[19]
S.K. Gupta, M. Sahu, P.S. Ghosh, D. Tyagi, M.K. Saxena, R.M. Kadam, Energy transfer dynamics and luminescence properties of Eu3+ in CaMoO4 and SrMoO4, Dalton Transactions. 44 (2015) 18957–18969.
DOI: 10.1039/c5dt03280f
Google Scholar
[20]
A. Hooda, S.P. Khatkar, S. Devi, V.B. Taxak, Structural and spectroscopic analysis of green glowing down-converted BYO: Er3+ nanophosphors for pc-WLEDs, Ceram Int. 47 (2021) 25602–25613.
DOI: 10.1016/j.ceramint.2021.05.286
Google Scholar
[21]
Deepali, M. Jayasimhadri, Structural and spectroscopic analysis of thermally stable Dy3+ activated Na4Ca4Si6O18 phosphor for optoelectronic device applications, Journal of Materials Science: Materials in Electronics. 33 (2022) 19218–19230.
DOI: 10.1007/s10854-022-08760-2
Google Scholar
[22]
Deepali, R. Bisi, Vandana, H. Kaur, M. Jayasimhadri, Structural and spectroscopic properties of Sm3+-doped NaBaB9O15 phosphor for optoelectronic device applications. J. Mater. Sci.: Mater. Electron. (2021) 1-9.
DOI: 10.1007/s10854-020-04934-y
Google Scholar
[23]
C. Kumari, A. Kumar, S.K. Sharma, J. Manam, Sr3LiSbO6: Er3+ phosphors for green LEDs and solar cell applications, Vacuum. 207 (2023).
DOI: 10.1016/j.vacuum.2022.111599
Google Scholar