[1]
W. R. J. Taylor and N. J. White, "Antimalarial Drug Toxicity: A Review," Drug Saf., vol. 27, no. 1, p.25–61, 2004.
DOI: 10.2165/00002018-200427010-00003
Google Scholar
[2]
A. Geto, M. Amare, M. Tessema, and S. Admassie, "Polymer-modified glassy carbon electrode for the electrochemical detection of quinine in human urine and pharmaceutical formulations," in Analytical and Bioanalytical Chemistry, Aug. 2012, p.525–530.
DOI: 10.1007/s00216-012-6171-8
Google Scholar
[3]
H. O. Alkadi, "Antimalarial drug toxicity: A review," Chemotherapy, vol. 53, no. 6, p.385–391, 2007.
DOI: 10.1159/000109767
Google Scholar
[4]
M. Buleandra, A. A. Rabinca, M. C. Cheregi, and A. A. Ciucu, "Rapid voltammetric method for quinine determination in soft drinks," Food Chem., vol. 253, no. June 2017, p.1–4, 2018.
DOI: 10.1016/j.foodchem.2018.01.130
Google Scholar
[5]
A. M. Goldenberg and L. F. Wexler, "Quinine overdose: review of toxicity and treatment.," Clin. Cardiol., vol. 11, no. 10, p.716–718, Oct. 1988.
DOI: 10.1002/clc.4960111012
Google Scholar
[6]
A. Ohira et al., "Fixed eruption due to quinine in tonic water: A case report with high-performance liquid chromatography and ultraviolet A analyses," J. Dermatol., vol. 40, no. 8, p.629–631, 2013.
DOI: 10.1111/1346-8138.12195
Google Scholar
[7]
R. A. Mirghani, Ö. Ericsson, J. Cook, P. Yu, and L. L. Gustafsson, "Simultaneous determination of quinine and four metabolites in plasma and urine by high-performance liquid chromatography," J. Chromatogr. B Biomed. Sci. Appl., vol. 754, no. 1, p.57–64, 2001.
DOI: 10.1016/S0378-4347(00)00577-6
Google Scholar
[8]
K. Shrivas and H. F. Wu, "Quantitative bioanalysis of quinine by atmospheric pressure-matrix assisted laser desorption/ionization mass spectrometry combined with dynamic drop-to-drop solvent microextraction," Anal. Chim. Acta, vol. 605, no. 2, p.153–158, 2007.
DOI: 10.1016/j.aca.2007.10.032
Google Scholar
[9]
X. Zheng and Z. Zhang, "Flow injection chemiluminescence determination of quinine using Mn3+ as the oxidant," Anal. Sci., vol. 16, no. 12, p.1345–1347, 2000.
DOI: 10.2116/analsci.16.1345
Google Scholar
[10]
B. Li, Z. Zhang, and M. Wu, "Flow-injection chemiluminescence determination of quinine using on-line electrogenerated cobalt(III) as oxidant.," Talanta, vol. 51, no. 3, p.515–521, Mar. 2000.
DOI: 10.1016/s0039-9140(99)00310-0
Google Scholar
[11]
C. Demir, R. G. Brereton, and M. C. Dumasia, "Detection of quinine and its metabolites in horse urine by gas chromatography-mass spectrometry.," Analyst, vol. 121, no. 5, p.651–662, May 1996.
DOI: 10.1039/an9962100651
Google Scholar
[12]
R. Jain, M. K. R. Mudiam, R. Ch, A. Chauhan, H. A. Khan, and R. C. Murthy, "Ultrasound assisted dispersive liquid-liquid microextraction followed by injector port silylation: A novel method for rapid determination of quinine in urine by GC-MS," Bioanalysis, vol. 5, no. 18, p.2277–2286, 2013.
DOI: 10.4155/bio.13.188
Google Scholar
[13]
S. Zaugg and W. Thormann, "Capillary electrophoretic separation, immunochemical recognition and analysis of the diastereomers quinine and quinidine and two quinidine metabolites in body fluids," J. Pharm. Biomed. Anal., vol. 24, no. 5–6, p.785–799, 2001.
DOI: 10.1016/S0731-7085(00)00546-X
Google Scholar
[14]
F. Azadmehr and K. Zarei, "Fabrication of an imprinted electrochemical sensor from L-tyrosine, 3-methyl-4-nitrophenol and gold nanoparticles for quinine determination," Bioelectrochemistry, vol. 127, p.59–67, 2019.
DOI: 10.1016/j.bioelechem.2019.01.001
Google Scholar
[15]
S. Karakaya, "Development of an amperometric hydrazine sensor at a disposable poly(alizarin red S) modified pencil graphite electrode," Monatshefte fur Chemie, vol. 150, no. 11, p.1911–1920, 2019.
DOI: 10.1007/s00706-019-02513-4
Google Scholar
[16]
S. Karakaya, B. Kartal, and Y. Dilgin, "Ultrasensitive voltammetric detection of an antimalarial drug (amodiaquine) at a disposable and low cost electrode," Monatshefte fur Chemie, vol. 151, no. 7, p.1019–1026, 2020.
DOI: 10.1007/s00706-020-02637-y
Google Scholar
[17]
D. Orata, Y. Amir, C. Nineza, D. Mbui, and M. Mukabi, "Surface Modified Electrodes Used In Cyclic Voltammetric Profiling Of Quinine An Anti-Malarial Drug," IOSR J. Appl. Chem., vol. 7, no. 5, p.81–89, 2014.
DOI: 10.9790/5736-07528189
Google Scholar
[18]
X. M. Zhan, L. H. Liu, and Z. N. Gao, "Electrocatalytic oxidation of quinine sulfate at a multiwall carbon nanotubes-ionic liquid modified glassy carbon electrode and its electrochemical determination," J. Solid State Electrochem., vol. 15, no. 6, p.1185–1192, 2011.
DOI: 10.1007/s10008-010-1184-8
Google Scholar
[19]
O. Dushna, L. Dubenska, M. Marton, M. Hatala, and M. Vojs, "Sensitive and selective voltammetric method for determination of quinoline alkaloid, quinine in soft drinks and urine by applying a boron-doped diamond electrode," Microchem. J., vol. 191, Aug. 2023.
DOI: 10.1016/j.microc.2023.108839
Google Scholar
[20]
K. Rudnicki, K. Sobczak, P. Borgul, S. Skrzypek, and L. Poltorak, "Determination of quinine in tonic water at the miniaturized and polarized liquid–liquid interface," Food Chem., vol. 364, 2021.
DOI: 10.1016/j.foodchem.2021.130417
Google Scholar
[21]
V. C. Tsaftari, M. Tarara, P. D. Tzanavaras, and G. Z. Tsogas, "A Novel Equipment-Free Paper-Based Fluorometric Method for the Analytical Determination of Quinine in Soft Drink Samples," Sensors, vol. 23, no. 11, 2023.
DOI: 10.3390/s23115153
Google Scholar
[22]
Y. Triana, Irkham, and Y. Einaga, "Electrochemical Oxidation Behavior of Nitrogen Dioxide for Gas Detection Using Boron Doped Diamond Electrodes," Electroanalysis, vol. 34, no. 4, p.752–760, Apr. 2022.
DOI: 10.1002/elan.202100122
Google Scholar
[23]
Y. Einaga, J. S. Foord, and G. M. Swain, "Diamond electrodes: Diversity and maturity," MRS Bull., vol. 39, no. 6, p.525–532, 2014.
DOI: 10.1557/mrs.2014.94
Google Scholar
[24]
Y. Einaga, "Diamond electrodes for electrochemical analysis," J. Appl. Electrochem., vol. 40, no. 10, p.1807–1816, Oct. 2010.
DOI: 10.1007/s10800-010-0112-z
Google Scholar
[25]
M. Murata, T. A. Ivandini, M. Shibata, S. Nomura, A. Fujishima, and Y. Einaga, "Electrochemical detection of free chlorine at highly boron-doped diamond electrodes," J. Electroanal. Chem., vol. 612, no. 1, p.29–36, 2008.
DOI: 10.1016/j.jelechem.2007.09.006
Google Scholar
[26]
Y. Triana, M. Tomisaki, and Y. Einaga, "Oxidation reaction of dissolved hydrogen sulfide using boron doped diamond," J. Electroanal. Chem., vol. 873, Sep. 2020.
DOI: 10.1016/j.jelechem.2020.114411
Google Scholar
[27]
Y. Triana, G. Ogata, and Y. Einaga, "Application of boron doped diamond electrodes to electrochemical gas sensor," Curr. Opin. Electrochem., vol. 36, p.101113, 2022.
DOI: 10.1016/j.coelec.2022.101113
Google Scholar
[28]
J. V. Macpherson, "A practical guide to using boron doped diamond in electrochemical research," Phys. Chem. Chem. Phys., vol. 17, no. 5, p.2935–2949, 2015.
DOI: 10.1039/c4cp04022h
Google Scholar
[29]
J. Ryl et al., "High-temperature oxidation of heavy boron-doped diamond electrodes: Microstructural and electrochemical performance modification," Materials (Basel)., vol. 13, no. 4, 2020.
DOI: 10.3390/ma13040964
Google Scholar
[30]
Y. Han, X. Ruan, J. Chen, H. Zhang, H. Zhao, and S. Zhang, "Photoelectrochemical properties and its application of nano-tio 2/boron-doped diamond heterojunction electrode material," Asian J. Chem., vol. 25, no. 11, p.6167–6172, 2013.
DOI: 10.14233/ajchem.2013.14299
Google Scholar
[31]
S. Kasahara et al., "Surface Hydrogenation of Boron-Doped Diamond Electrodes by Cathodic Reduction," Anal. Chem., vol. 89, no. 21, p.11341–11347, 2017.
DOI: 10.1021/acs.analchem.7b02129
Google Scholar
[32]
J. Ryl, L. Burczyk, R. Bogdanowicz, M. Sobaszek, and K. Darowicki, "Study on surface termination of boron-doped diamond electrodes under anodic polarization in H2SO4 by means of dynamic impedance technique," Carbon N. Y., vol. 96, p.1093–1105, 2016.
DOI: 10.1016/j.carbon.2015.10.064
Google Scholar
[33]
P. Brosler, A. V. Girão, R. F. Silva, J. Tedim, and F. J. Oliveira, "In-house vs. commercial boron-doped diamond electrodes for electrochemical degradation of water pollutants: A critical review," Front. Mater., vol. 10, no. March, p.1–27, 2023.
DOI: 10.3389/fmats.2023.1020649
Google Scholar
[34]
L. et al. Hutton, "Anal. Chem. 2013, 85, 7230−7240_Hutton.pdf," Anal. Chem., vol. 85, p.7230–7240, 2013.
DOI: 10.1021/ac401042t
Google Scholar
[35]
K. Asai, T. A. Ivandini, M. M. Falah, and Y. Einaga, "Surface Termination Effect of Boron-Doped Diamond on the Electrochemical Oxidation of Adenosine Phosphate," Electroanalysis, vol. 28, no. 1, p.177–182, 2016.
DOI: 10.1002/elan.201500505
Google Scholar
[36]
K. Suliborska, M. Baranowska, A. Bartoszek, W. Chrzanowski, and J. Namieśnik, "Determination of Antioxidant Activity of Vitamin C by Voltammetric Methods," p.23, 2019.
DOI: 10.3390/proceedings2019011023
Google Scholar
[37]
V. Climent and J. M. Feliu, "Cyclic voltammetry," Encycl. Interfacial Chem. Surf. Sci. Electrochem., p.48–74, 2018.
DOI: 10.1016/B978-0-12-409547-2.10764-4
Google Scholar
[38]
N. Elgrishi, K. J. Rountree, B. D. McCarthy, E. S. Rountree, T. T. Eisenhart, and J. L. Dempsey, "A Practical Beginner's Guide to Cyclic Voltammetry," J. Chem. Educ., vol. 95, no. 2, p.197–206, Feb. 2018.
DOI: 10.1021/acs.jchemed.7b00361
Google Scholar
[39]
A. J. Bard and L. R. Faulkner, Electrochemical Methods: Fundamentals and Applications, 2nd Edition. 2001.
Google Scholar
[40]
R. A. Dar, P. K. Brahman, S. Tiwari, and K. S. Pitre, "Electrochemical studies of quinine in surfactant media using hanging mercury drop electrode: A cyclic voltammetric study," Colloids Surfaces B Biointerfaces, vol. 98, p.72–79, Oct. 2012.
DOI: 10.1016/j.colsurfb.2012.04.035
Google Scholar
[41]
M. M. Walczak, D. A. Dryer, D. D. Jacobson, M. G. Foss, and N. T. Flynn, "Education pH-dependent redox couple: Illustrating the Nernst equation using cyclic voltammetry," J. Chem. Educ., vol. 74, no. 10, p.1195–1197, 1997.
DOI: 10.1021/ed074p1195
Google Scholar
[42]
F. Allegrini and A. C. Olivieri, Figures of Merit, 2nd ed., no. February 2018. Elsevier Inc., 2020.
DOI: 10.1016/b978-0-12-409547-2.14612-8
Google Scholar