Synthesis and Investigation of Surface Tension Properties of Fatty Pyrimidinium Betaines

Article Preview

Abstract:

A novel series of fatty betaines containing a pyrimidine ring with different alky chain lengths were synthesized by condensation of fatty N,N'-diphenylalkylamidines with a specific highly reactive malonic ester derivative under mild conditions. The chemical structures of products were characterized by common spectroscopic analyses (FTIR, mass spectra, 1H NMR, and 13C NMR spectrometry). Equilibrium surface tension and conductivity as a function of concentration of dodecyl pyrimidinum betaine (betaine with a 12 -carbon alkyl chain) in ethanolic solutions were measured and the critical micelle concentration (CMC) was determined at 30 °C. The results showed that the critical micelle concentration (CMC) of dodecyl pyrimidinum betaine is 0.925 mmol/L and the corresponding surface tension (γCMC) is 25.38 mN/m respectively. These results revealed that the synthesized fatty pyrimidinium betaines are efficient amphoteric surfactants making them promising candidates for applications in a very large number of areas.

You have full access to the following eBook

Info:

* - Corresponding Author

[1] Sarkar, A. Pal, A. Rakshit, B. Saha, Properties and applications of amphoteric surfactant: A concise review, J. Surfact. Deterg. (2021) 1–22.

DOI: 10.1002/jsde.12542

Google Scholar

[2] G. Savary, M. Grisel, C. Picard, Cosmetics and personal care products, In: O. Olatunji (Ed.), Natural polymers: industry techniques and applications, Springer International Publishing, Basilea (2016) p.219–261.

DOI: 10.1007/978-3-319-26414-1_8

Google Scholar

[3] V. Seredyuk, E. Alami, M. Nydén, K. Holmberg, Micellization and adsorption properties of novel zwitterionic surfactants, Langmuir, 17 (2001) 5160–5165.

DOI: 10.1021/la010182q

Google Scholar

[4] L. M. Jansen et al., Synthesis and performance of bio-based amphoteric surfactants, chemistry - A European Journal , 30(38) (2024 )1-6.

Google Scholar

[5] M. Lindstedt, S. Allenmark, A.R. Thompson, L. Edebo, Antimicrobial activity of betaine esters, quaternary ammonium amphiphiles which spontaneously hydrolyze into nontoxic components, Antimicrob. Agents Chemother. 34 (1990) 1949–1954.

DOI: 10.1128/aac.34.10.1949

Google Scholar

[6] C.R. Birnie, D. Malamud, R.L. Schnaare, Antimicrobial evaluation of N-alkyl betaines and N-alkyl-N,N-dimethylamine oxides with variations in chain length, Antimicrob. Agents Chemother. 44 (2000) 2514–2517.

DOI: 10.1128/aac.44.9.2514-2517.2000

Google Scholar

[7] M.A. Gonzalez, J.C. Royero, A. Mesa, L.B. Galvis, Synthesis and biological evaluation of pyridine betaine A and B, Natl. Prod. Res. 23 (2009) 1485–1491.

Google Scholar

[8] A. Cosquer, Antibacterial activity of glycine betaine analogues: involvement of osmoportes, Bioorg. Med. Chem. Lett. 14 (2004) 2061–2065.

Google Scholar

[9] J. Zhao, C. Dai, Q. Ding, M. Du, H. Feng, Z. Wei, A. Chen, M. Zhao, The structure effect on the surfacial and interfacial properties of zwitterionic sulfobetaine surfactants for enhanced oil recovery, RSC Adv. 18 (2015) 13993-14001.

DOI: 10.1039/c4ra16235h

Google Scholar

[10] X. Wang, J. Liu, L. Yu, J. Jiao, R. Wang, L. Sun, Surface adsorption and micelle formation of imidazolium-based zwitterionic surface active ionic liquids in aqueous solution, J. Colloid Interface Sci. 391 (2013) 103–110.

DOI: 10.1016/j.jcis.2012.09.073

Google Scholar

[11] X. Liu, L. Dong, Y. Fang, A novel zwitterionic imidazolium-based ionic liquid surfactant: 1-carboxymethyl-3-dodecylimidazolium inner salt, J. Surfact. Deterg. 14 (2011) 497–504.

DOI: 10.1007/s11743-011-1254-7

Google Scholar

[12] A. Koch, U. Jonas, H. Ritter, H.W. Spiess, Extended mesoionic systems: synthesis and characterization of monocyclic, polycyclic and macrocyclic pyrimidinium-olate derivatives and their photochemical behavior, Tetrahedron 60 (2004) 10011–10018.

DOI: 10.1016/j.tet.2004.08.003

Google Scholar

[13] C. Kratky and T. Kappe, "Mesoionic six-membered heterocycles. XIV.Crystal structure of a pyrimidine betaine", J. Heterocycl. Chem., 18, 05(1981) 881-883.

DOI: 10.1002/jhet.5570180506

Google Scholar

[14] G. Wenska, M. Insińska, and B. Skalski, Synthesis and solvatochromism of 2-(N-pyridinio)-pyrimidin-4-olate and related betaines derived from uracils, Polish J. Chem., 74 (2000) 659-672.

Google Scholar

[15] J. Pan, L.Yu, D. Liu, and D. Hu, Synthesis and Insecticidal Activity of Mesoionic Pyrido[1,2-α]pyrimidinone Derivatives Containing a Neonicotinoid Moiety, Molecules, 23 (5) (2018) 1217-1228.

DOI: 10.3390/molecules23051217

Google Scholar

[16] F. Malki, A. Alouache, S. Krimat, Effects of various parameters on the antioxidant activities of the synthesized heterocyclic pyrimidinium betaines, Indones. J. Chem. 23 (2023) 90-100.

DOI: 10.22146/ijc.74803

Google Scholar

[17] F. Malki, A. Alouache, A. Meklat, Synthesis of heterocyclic mesoionic betaines derivatives containing a pyrimidine ring for screening of their biological activities, Res. J. Chem. Environ. 28 (2024) 43-47.

DOI: 10.25303/281rjce43047

Google Scholar

[18] Q. Zuo, Z. Wang, P. Li, L. Yang, Z. Song, Studies on the synthesis and application properties of a betaine surfactant with a benzene ring structure, Appl. Sci. 13 (2023) 4378.

DOI: 10.3390/app13074378

Google Scholar

[19] A.L. Chong, M. Forsyth, D.R. MacFarlane, Novel imidazolinium ionic liquids and organic salts, Electrochim. Acta 159 (2015) 219–226.

DOI: 10.1016/j.electacta.2015.01.180

Google Scholar

[20] C.M. Phan, et al., Micelle and surface tension of double-chain cationic surfactants, ACS Omega 3 (2018) 10907–10911.

DOI: 10.1021/acsomega.8b01667

Google Scholar

[21] A. Ghanem, R.D. Alharthy, S.M. Desouky, R.A. El-Nagar, Synthesis and characterization of imidazolium-based ionic liquids and evaluating their performance as asphaltene dispersants, Materials 15 (2022) 1600.

DOI: 10.3390/ma15041600

Google Scholar

[22] A. Gharbi, L. Badache, L. Berriche, S. Habi Ben Hariz, Synthesis and characterization both micellization and thermodynamic parameter of cationic surfactant mixture derived from vegetable oil, J. Iran. Chem. Soc. (2020).

DOI: 10.1007/s13738-020-02081-z

Google Scholar

[23] F. Malki, A. Touati, S. Rahal, S. Moulay, Total synthesis of monocyclic pyrimidinium betaines with fatty alkyl chain, Asian J. Chem. 23 (2011) 961–967.

Google Scholar

[24] M. Huhn, E. Somfai, G. Szabo, G. Resofszki, Ger. Offen. 26 27 709. (1976).

Google Scholar

[25] P. Dvortsak, G. Resofszki, M. Huhn, L. Zalantai, A.I. Kiss, Reactions of pentachlorophenyl esters of malonic acid derivatives—II: preparation and investigation of pyrimidine betaines, Tetrahedron 32 (1976) 2117–2120.

DOI: 10.1002/chin.197652265

Google Scholar

[26] F. Malki, A. Touati, S. Moulay, Extraction and recrystallization of mesoionic pyrimidinium betaines, IJCEA 5 (2014) 151–154.

DOI: 10.7763/ijcea.2014.v5.369

Google Scholar

[27] K.D. Danov, S.D. Kralchevska, P.A. Kralchevsky, K.P. Ananthapadmanabhan, A. Lips, Mixed solutions of anionic and zwitterionic surfactant (betaine): surface tension isotherms, adsorption and relaxation kinetics, Langmuir 20 (2004) 5445–5453.

DOI: 10.1021/la049576i

Google Scholar

[28] D. Fu, X. Gao, B. Huang, J. Wang, H. Jiang, M. Zheng, P. Li B. Huang1, K. Kan , X.n Zhang, Micellization and thermodynamics study of ester functionalized picoline-based ionic liquid surfactants in water, RSC Adv 23 (2022) 14477–14484.

DOI: 10.1039/d2ra01706g

Google Scholar

[29] L. Shi, J. Ma, Y. Chen, Synthesis and surface properties of sodium sulfonate amphoteric surfactants having different hydrophobic carbon chain length, Research on Chemical Intermediates, (2022) 48:2509–2533.

DOI: 10.1007/s11164-022-04719-4

Google Scholar

[30] A. Bratovcic, S. Nazdrajic, A. Odobasic, I. Sestan, The Influence of Type of Surfactant on Physicochemical Properties of Liquid Soap,International Journal of Materials and Chemistry, 8(2) (2018) 31-37.

Google Scholar