[1]
D. Bruen, C. Delaney, L. Florea, D. Diamond, Glucose Sensing for Diabetes Monitoring: Recent Developments, Sensors, 17 (2017) 1866-1872.
DOI: 10.3390/s17081866
Google Scholar
[2]
S.M. Khor, J. Choi, P. Won, S.H. Ko, Challenges and Strategies in Developing an Enzymatic Wearable Sweat Glucose Biosensor as a Practical Point-Of-Care Monitoring Tool for Type II Diabetes, Nanomaterials, 12 (2022) 221-235.
DOI: 10.3390/nano12020221
Google Scholar
[3]
Z. Yin, Z. Ji, W. Zhang, E.W. Taylor, X. Zeng, J. Wei, The glucose effect on direct electrochemistry and electron transfer reactionnof glucose oxidase entrapped in a carbon nanotube-polymer matrix, Chemistry Select, 5 (2020) 12224–12231.
DOI: 10.1002/slct.202003536
Google Scholar
[4]
M. Buaki-Sogó, L. García-Carmona, M. Gil-Agustí, L. Zubizarreta, M. García-Pellicer, A. Quijano-López, Enzymatic Glucose- Based Bio-batteries: Bioenergy to Fuel Next-Generation Devices, Top. Curr. Chem., 378 (2020) 49-58.
DOI: 10.1007/s41061-020-00312-8
Google Scholar
[5]
M. Güemes, S.A. Rahman, K. Hussain, What is a normal blood glucose? Arch. Dis. Child., 101 (2016) 569-573.
DOI: 10.1136/archdischild-2015-308336
Google Scholar
[6]
Y. Cheng, X. Gong, J. Yang, G. Zheng, Y. Zheng, Y. Li, Y. Xu, G. Nie, X. Xie, M. Chen, A touch-actuated glucose sensorfully integrated with microneedle array and reverse iontophoresis for diabetes monitoring, Biosens. Bioelectron., 203 (2022) 1140-1156.
DOI: 10.1016/j.bios.2022.114026
Google Scholar
[7]
I. Rassas, M. Braiek, A. Bonhomme, F. Bessueille, G. Rafin, H. Majdoub, N. Jaffrezic-Renault, Voltammetric glucose biosensor based on glucose oxidase encapsulation in a chitosan-kappa-carrageenan polyelectrolyte complex, Mater. Sci. Eng. C 95 (2019) 152–159.
DOI: 10.1016/j.msec.2018.10.078
Google Scholar
[8]
G. Kaur, A. Kaur, H. Kaur, Review on nanomaterials/conducting polymer based nanocomposites for the development of biosensors and electrochemical sensors, Polym Technol Mater., 60(5) (2021) 502–519.
DOI: 10.1080/25740881.2020.1844233
Google Scholar
[9]
Q.C. Dong, H. Ryu, Y. Lei, Metal Oxide based non-enzymatic electrochemical sensors for glucose detection, Electrochemical Acta, 2 (2021) 137-144.
DOI: 10.1016/j.electacta.2021.137744
Google Scholar
[10]
Kafi, A.K.M.; Bin Kasri, A.; Jose, R. Glucose Biosensor Based on Glucose Oxidase-Horseradish Peroxidase/Multiporous Tin Oxide (SnO2) Modified Electrode. J. Nanosci. Nanotechnol., 21 (2021) 3059–3064..
DOI: 10.1166/jnn.2021.19283
Google Scholar
[11]
S. Pereira, N. Santos, A. Carvalho, A. Fernandes, F. Costa, Electrochemical Response of Glucose Oxidase Adsorbed on Laser-Induced Graphene, Nanomaterials, 11 (2021) 1893-1906.
DOI: 10.3390/nano11081893
Google Scholar
[12]
R. Bi, X. Ma, K. Miao, P. Ma, Q. Wang, Enzymatic biosensor based on dendritic gold nanostructure and enzyme precipitation coating for glucose sensing and detection. Enzym. Microb. Technol., 162 (2023) 110-122.
DOI: 10.1016/j.enzmictec.2022.110132
Google Scholar
[13]
N. Shen, H. Xu, W. Zhao, Y. Zhao, X. Zhang, Highly Responsive and Ultrasensitive Non-Enzymatic Electrochemical Glucose Sensor Based on Au Foam. Sensors, 19 (2019) 1203-1217.
DOI: 10.3390/s19051203
Google Scholar
[14]
F. Zhou, W. Jing, S. Liu, Q. Mao, Y. Xu, F. Han, Z. Wei, Z. Jiang, Electrodeposition of gold nanoparticles on ZnO nanorods for improved performance of enzymatic glucose sensors. Mater. Sci. Semicond., 105 (2020) 1047-1058.
DOI: 10.1016/j.mssp.2019.104708
Google Scholar
[15]
P. Balasubramanian, M. Annalakshmi, S.M. Chen, T.W. Chen, Ultrasensitive Non-Enzymatic Electrochemical Sensing of Glucose in Noninvasive Samples Using Interconnected Nanosheets-like NiMnO3 as a Promising Electrocatalyst. Sens. Actuators, B 299 (2019) 1269-1279.
DOI: 10.1016/j.snb.2019.126974
Google Scholar
[16]
R. Batool, A. Rhouati, M.H. Nawaz, A. Hayat, J.L. Marty, A Review of the Construction of Nano-Hybrids for Electrochemical Biosensing of Glucose, Biosensors, 9 (2019) 46-57.
DOI: 10.3390/bios9010046
Google Scholar
[17]
R. Umapathi, S.M. Ghoreishian, G.M. Rani, Y. Cho, Y.S. Huh, Review-Emerging Trends in the Development of Electrochemical Devices for the On-Site Detection of Food Contaminants, ECS Sensor Plus, 1 (2022a) 574-601.
DOI: 10.1149/2754-2726/ac9d4a
Google Scholar
[18]
R. Umapathi, S.M. Ghoreishian, S. Sonwal, G.M. Rani, Y.S. Huh, Portable electrochemical sensing methodologies for on-site detection of pesticide residues in fruits and vegetables. Coord, Chemical Review, 453 (2022b) 284-305.
DOI: 10.1016/j.ccr.2021.214305
Google Scholar
[19]
K.L. Mohamad, N. Nor, N.H. Ramli, H. Poobalan, K. Qi Tan, K. Abdul Razak, Recent Advancement in Disposable Electrode Modified with Nanomaterials for Electrochemical Heavy Metal Sensors, Critical Revieew Analytical Chemistry, 45 (2021) 25-36.
DOI: 10.1080/10408347.2021.1950521
Google Scholar
[20]
K. Shim, W.C. Lee, M.S. Park, M. Shahabuddin, Y. Yamauchi, S.A. Hossain, Y.B. Shim, J.H. Kim, Au decorated core-shell structured Au@Pt for the glucose oxidation reaction. Sens. Actuators, B 278 (2019) 88−96.
DOI: 10.1016/j.snb.2018.09.048
Google Scholar
[21]
Y.S. Wu, Z.W. Wu, C.L. Lee, Concave Pd core/island Pt shell nanoparticles: Synthesis and their promising activities toward neutral glucose oxidation. Sens. Actuators, B 281 (2019) 1−7.
DOI: 10.1016/j.snb.2018.10.042
Google Scholar
[22]
A.C. Fereshteh Jalilian, K. Sadrjavadi, A. Fattahi, Y. Shokoohinia, Green synthesized silver nanoparticle from Allium ampeloprasum aqueous extract: Characterization, antioxidant activities, antibacterial and cytotoxicity effects, Adv Powder Technol 31 (2020) 1323-1332.
DOI: 10.1016/j.apt.2020.01.011
Google Scholar
[23]
S. Nabavifard, S. Jalili, F. Rahmati, Y. Vasseghian, G.A.M. Ali, Application of Dendrimer/Gold Nanoparticles in Cancer Therapy, A Review. J. Inorg. Organomet. Polym Mater., 30 (2020) 4231-4244.
DOI: 10.1007/s10904-020-01705-4
Google Scholar
[24]
C.H. Su, C.L. Sun, S.Y. Peng, J.J. Wu, Y.H. Huang, Y.C. Liao, High performance non-enzymatic graphene-based glucose fuel cell operated under moderate temperatures and a neutral solution, J. Taiwan Inst. Chem. Eng. 95 (2019) 48−54
DOI: 10.1016/j.jtice.2018.09.034
Google Scholar
[25]
M. Kiani, N. Rabiee, M. Bagherzadeh, A.M. Ghadiri, Y. Fatahi, Improved Green Biosynthesis of Chitosan Decorated Ag- and Co3O4-Nanoparticles: A Relationship Between Surface Morphology, Photocatalytic and Biomedical Applications, Nanomed Nanotechnol Biol Med., 32 (2021) 1023-1031.
DOI: 10.1016/j.nano.2020.102331
Google Scholar
[26]
J. Khan, K. Saeed, I. Khan, Nanoparticles: Properties, Applications and Toxicities. . Arab J Chem., 12 (2019) 908-931.
Google Scholar
[27]
B.G. Amin, J. Masud, M. Nath, Non-enzymatic glucose sensor based on CoNi2Se4/rGO nanocomposite with Ultrahigh sensitivity at low working potential. J. Mater. Chem. B 7 (2019) 2338−2348.
DOI: 10.1039/c9tb00104b
Google Scholar
[28]
V. Morales-Lozoya, H. Espinoza-Gómez, Z.L. Flores-López, E.L. Sotelo-Barrera, A. Núñez-Rivera, Study of the effect of the different parts of Morinda citrifolia L. (noni) on the green synthesis of silver nanoparticles and their antibacterial activity, Appl. Surf. Sci., 537 (2021) 1478- 1485.
DOI: 10.1016/j.apsusc.2020.147855
Google Scholar
[29]
L. Sakalauskiene, A. Popov, A. Kausaite-Minkstimiene, A. Ramanavicius, A. Ramanaviciene, The Impact of Glucose Oxidase Immobilization on Dendritic Gold Nanostructures on the Performance of Glucose Biosensors. Biosensors, 12 (2022) 320-332
DOI: 10.3390/bios12050320
Google Scholar
[30]
R.B. Devika, B.P. Varsha, Studies on Effect of pH on Cross-linking of Chitosan With Sodium Tripolyphosphate: A Technical Note. Pharmaceutical Science Technology, 7(2) (2006) 1-6
Google Scholar
[31]
M.D. Leonida, S. Banjade, T. Vo, G. Anderle, G.J. Haas, N. Philips, Nanocomposite materials with antimicrobial activity based on chitosan. Inteernational Journal of Nano and Biomaterials, 3(4) (2011) 316-334.
DOI: 10.1504/ijnbm.2011.045885
Google Scholar
[32]
N. Liu, X. Xiang, M. Sun, P. Li, H. Qin, H. Liu, Y. Zhou, L. Wang, L. Wu, J. Zhu, Flexible hydrogel non-enzymatic QCM sensor for continuous glucose monitoring. Biosens. Bioelectron. X 10 (2022) 100-110.
DOI: 10.1016/j.biosx.2022.100110
Google Scholar
[33]
A. Dabhade, S. Jayaraman, B. Paramasivan, Development of glucose oxidase-chitosan immobilized paper biosensor using screen-printed electrode for amperometric detection of Cr(VI) in water, Biotech., 11 (2021) 183-195.
DOI: 10.1007/s13205-021-02736-5
Google Scholar
[34]
R. Eslami, N. Azizi, S.R. Ghaffarian, M. Mehrvar, H. Zarrin, Highly sensitive and selective non-enzymatic measurement of glucose using arraying of two separate sweat sensors at physiological pH. Electrochim. Acta., 404 (2022) 1397-1412.
DOI: 10.1016/j.electacta.2021.139749
Google Scholar
[35]
H. Wang, W. Zhu, T. Xu, Y. Zhang, Y. Tian, X. Liu, J. Wang, M. Ma, An integrated nanoflower-like MoS2@CuCo2O4 heterostructure for boosting electrochemical glucose sensing in beverage. Food Chem., 396 (2022) 1336-1346.
DOI: 10.1016/j.foodchem.2022.133630
Google Scholar
[36]
B. Mireia, G. Laura, G. Mayte, G. Marta, Q. Alfredo, Low-Denaturazing Glucose Oxidase Immobilization onto Graphite Electrodes by Incubation in Chitosan Solutions, Polysaccharide, 3 (2022) 388–400.
DOI: 10.3390/polysaccharides3020023
Google Scholar
[37]
Borchert, H., Shevchenko, E.V., Robert, A., Mekis, I., Kornowski, A., Grubel, G. and Weller, H. 2005. Silver nanoparticles: Large scale solvothermal synthesis and optical properties. Langmuir, 21, 1931-1936.
DOI: 10.1021/la0477183
Google Scholar
[38]
Jyoti, K., Baunthiyal, M. and Singh, A. 2016. Characterization of silver nanoparticles synthesized using Urtica dioica Linn. leaves and their synergistic effects with antibiotics. Journal of Radiation Research Applied Science, 9(3), 217–227.
DOI: 10.1016/j.jrras.2015.10.002
Google Scholar
[39]
Dubey, S.P., Lahtinen, M. and Sillanpää, M. 2010. Tansy fruit mediated greener synthesis of silver and gold nanoparticles. Process Biochemical, 45(7), 1065–1071.
DOI: 10.1016/j.procbio.2010.03.024
Google Scholar
[40]
Ashok, K. T. and Vikas, R. 2010. Cross-linked Chitosan films: Effect of cross-linking Density on swelling parameters. Pakistan Journal of Pharmaceutical Sciences, 23 (4), 443-448.
Google Scholar
[41]
Kemp, W. 1991. Infrared Spectroscopy. Macmillan Press, London, pp.19-56.
Google Scholar
[42]
Rekha, M.R. and Sharma, C.P. 2008. pH sensitive succinyl chitosan microarticles: a preliminary investigation towards oral insulin delivery. Trends in Biomaterials & Artificial Organs, 21(2), 107–115.
Google Scholar
[43]
Modrzejewska, Z., Zarzychi, R. and Sielski, J. 2010. Synthesis of silver nanoparticles in a chitosan solution. Progress on Chemistry and application of chitin, 15, 63-72.
Google Scholar
[44]
Mallikarjun, K., Narsimha, G., Dillip, G., Praveen, B., Shreedhar, B. and Lakshmi, S. 2011. Green synthesis of silver nanoparticles using Ocimum leaf extract and their characterization. Digest Journal of Nanomaterial Biostructure, 6, 181–186.
Google Scholar
[45]
Wani, I.A., Ganguly, A., Ahmed, J. and Ahmed, T. 2011. Silver nanoparticles: ultrasonic wave assisted synthesis, optical characterization and surface area studies. Material Letters, 65(3), 520-522.
DOI: 10.1016/j.matlet.2010.11.003
Google Scholar
[46]
Vidhu, V.K., Aromal, S. and Philip, D. 2011. Green synthesis of silver nanoparticles using Macrotylomauniflorum. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 83, 392–397.
DOI: 10.1016/j.saa.2011.08.051
Google Scholar
[47]
F. Sun, X. Wang, Z. You, H. Xia, S. Wang, C. Jia, Y. Zhou, J. Zhang, Sandwich structure confined gold as highly sensitive and stable electrochemical non-enzymatic glucose sensor with low oxidation potential., J. Mater. Sci. Technol., 123 (2022) 113–122.
DOI: 10.1016/j.jmst.2022.01.014
Google Scholar
[48]
Baozhan, Z., Guangyue, L., Aiwen, Y., Yanling, X., Martin, M.F. 2014. A sensitive AgNPs/CuOnanofibers non-enzymatic glucose sensor based on electrospinning technology, Sensors and Actuators B: Chemical 195, 431-438.
DOI: 10.1016/j.snb.2014.01.046
Google Scholar
[49]
H.A. Wytse, C. Yejung, S. Kwang-dong, P. Yuanzhe, Simple synthesis of CuO/Ag nanocomposite electrode using precursor ink for non-enzymatic electrochemical hydrogen peroxide sensing, Sensors and Actuators B: Chemical, 255 (2018) 1995-2001.
DOI: 10.1016/j.snb.2017.08.217
Google Scholar
[50]
A.H. Shah, A. Shah, U.A. Rana, S.U.D. Khan, H. Hussain, S.B. Khan, R. Qureshi, B.A. adshah, pH Dependent electrochemical characterization, computational studies of thermodynamic, kinetics and analytical parameters of two phenazine, Electroanalytical, 26 (2017) 2292-2301.
Google Scholar
[51]
X. Zhang, J. Zhao, C. Wang, L. Zhu, X. Pan, Y. Liu, J. Li, X. Guo, D. Chen, Measurement of sucrose in beverages using a blood glucose meter with cascade-catalysis enzyme particle, Food Chemistry, 398 (2023) 933-951.
DOI: 10.1016/j.foodchem.2022.133951
Google Scholar
[52]
Laviron, E. 1979. General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems. Journal of Electroanalytical Chemistry and Electrochemistry, 101, 19–28.
DOI: 10.1016/s0022-0728(79)80075-3
Google Scholar
[53]
D. Thatikayala, D. Ponnamma, K.K. Sadasivuni, J.J. Cabibihan, A.K. Al-Ali, R.A. Malik, B. Min, Progress of Advanced Nanomaterials in the Non-Enzymatic Electrochemical Sensing of Glucose and H2O2. Biosensors, 10 (2020) 151-162.
DOI: 10.3390/bios10110151
Google Scholar
[54]
Wu, S. 2010. Direct electrochemistry of glucose oxidase assembled on graphene and application to glucose detection. Electrochimical Acta, 55(28), 8606-8614.
DOI: 10.1016/j.electacta.2010.07.079
Google Scholar
[55]
Chen, J.; Zheng, X.; Li, Y.; Zheng, H.; Liu, Y.; Suye, S.-i. A Glucose Biosensor Based on Direct Electron Transfer of Glucose Oxidase on PEDOT Modified Microelectrode. J. Electrochem. Soc., 167(2020) 675-687.
DOI: 10.1149/1945-7111/ab7e26
Google Scholar
[56]
Z. Yin, Immobilization of Glucose oxidase and Catalase for the Fabrication of Biofuel cell, (2018.) M.Sc. Thesis, North Carolina State University.
Google Scholar