Direct Electron Transfer and Electro-Catalytic Activity of Non-Enzymatic Glucose Biosensor Based on Silver Nanoparticle (AgNPs) Stabilized with Sodium Tripolyphosphate (NaTPP) Cross-Linked Chitosan

Article Preview

Abstract:

The development of non-enzymatic glucose biosensor has been the concern of many researchers mainly because enzymes based sensor despite having excellent sensitivity and selectivity, has the limitations such as poor stability, complicated enzyme immobilization, critical operating conditions such as optimum temperature and reproducibility. This study developed a cheap biocompatible non-enzymatic glucose biosensor based on silver nanoparticle (AgNPs) stabilized with sodium tripolyphosphate (NaTPP) cross-linked chitosan. Direct electron transfer and electro-catalytic activity of the AgNPs modified glassy carbon electrode (AgNPGCE) was investigated using potentiometric and amperometric techniques. AgNPs was prepared and characterized by Fourier transform Infra-red spectroscopy (FTIR), X-ray diffractometry (XRD) and Scanning electron microscopy (SEM). The crystalline size of the AgNPs was revealed with XRD. However, the SEM micrograph of AgNPs revealed the spherical shape with a non-uniform granular shape attributed to bio-mediated ionic gelation process. The FTIR spectra of AgNPs shown peaks at 1054 – 1645 cm-1 suggesting the presence of phosphonate linkages between ammonium, -NH3+ of chitosan and -PO32- moieties of NaTPP during cross linking process. Electro-catalytic oxidation of glucose at the AgNPGCE surface and the mechanism involved in glucose oxidation was revealed via cyclic voltammetry. The AgNPGCE showed a better electrochemical response towards glucose. This glucose sensor showed high sensitivity at +0.54 V. A low detection limit of 1.22 µM (the confident level κ = 3), and wide linear range of 2 to 24 µM with a correlation coefficient of 0.9987 were obtained. The calculated parameters revealed that AgNPGCE had shown better overall electrochemical performance and response than enzymatic biosensor.

You have full access to the following eBook

Info:

* - Corresponding Author

[1] D. Bruen, C. Delaney, L. Florea, D. Diamond, Glucose Sensing for Diabetes Monitoring: Recent Developments, Sensors, 17 (2017) 1866-1872.

DOI: 10.3390/s17081866

Google Scholar

[2] S.M. Khor, J. Choi, P. Won, S.H. Ko, Challenges and Strategies in Developing an Enzymatic Wearable Sweat Glucose Biosensor as a Practical Point-Of-Care Monitoring Tool for Type II Diabetes, Nanomaterials, 12 (2022) 221-235.

DOI: 10.3390/nano12020221

Google Scholar

[3] Z. Yin, Z. Ji, W. Zhang, E.W. Taylor, X. Zeng, J. Wei, The glucose effect on direct electrochemistry and electron transfer reactionnof glucose oxidase entrapped in a carbon nanotube-polymer matrix, Chemistry Select, 5 (2020) 12224–12231.

DOI: 10.1002/slct.202003536

Google Scholar

[4] M. Buaki-Sogó, L. García-Carmona, M. Gil-Agustí, L. Zubizarreta, M. García-Pellicer, A. Quijano-López, Enzymatic Glucose- Based Bio-batteries: Bioenergy to Fuel Next-Generation Devices, Top. Curr. Chem., 378 (2020) 49-58.

DOI: 10.1007/s41061-020-00312-8

Google Scholar

[5] M. Güemes, S.A. Rahman, K. Hussain, What is a normal blood glucose? Arch. Dis. Child., 101 (2016) 569-573.

DOI: 10.1136/archdischild-2015-308336

Google Scholar

[6] Y. Cheng, X. Gong, J. Yang, G. Zheng, Y. Zheng, Y. Li, Y. Xu, G. Nie, X. Xie, M. Chen, A touch-actuated glucose sensorfully integrated with microneedle array and reverse iontophoresis for diabetes monitoring, Biosens. Bioelectron., 203 (2022) 1140-1156.

DOI: 10.1016/j.bios.2022.114026

Google Scholar

[7] I. Rassas, M. Braiek, A. Bonhomme, F. Bessueille, G. Rafin, H. Majdoub, N. Jaffrezic-Renault, Voltammetric glucose biosensor based on glucose oxidase encapsulation in a chitosan-kappa-carrageenan polyelectrolyte complex, Mater. Sci. Eng. C 95 (2019) 152–159.

DOI: 10.1016/j.msec.2018.10.078

Google Scholar

[8] G. Kaur, A. Kaur, H. Kaur, Review on nanomaterials/conducting polymer based nanocomposites for the development of biosensors and electrochemical sensors, Polym Technol Mater., 60(5) (2021) 502–519.

DOI: 10.1080/25740881.2020.1844233

Google Scholar

[9] Q.C. Dong, H. Ryu, Y. Lei, Metal Oxide based non-enzymatic electrochemical sensors for glucose detection, Electrochemical Acta, 2 (2021) 137-144.

DOI: 10.1016/j.electacta.2021.137744

Google Scholar

[10] Kafi, A.K.M.; Bin Kasri, A.; Jose, R. Glucose Biosensor Based on Glucose Oxidase-Horseradish Peroxidase/Multiporous Tin Oxide (SnO2) Modified Electrode. J. Nanosci. Nanotechnol., 21 (2021) 3059–3064..

DOI: 10.1166/jnn.2021.19283

Google Scholar

[11] S. Pereira, N. Santos, A. Carvalho, A. Fernandes, F. Costa, Electrochemical Response of Glucose Oxidase Adsorbed on Laser-Induced Graphene, Nanomaterials, 11 (2021) 1893-1906.

DOI: 10.3390/nano11081893

Google Scholar

[12] R. Bi, X. Ma, K. Miao, P. Ma, Q. Wang, Enzymatic biosensor based on dendritic gold nanostructure and enzyme precipitation coating for glucose sensing and detection. Enzym. Microb. Technol., 162 (2023) 110-122.

DOI: 10.1016/j.enzmictec.2022.110132

Google Scholar

[13] N. Shen, H. Xu, W. Zhao, Y. Zhao, X. Zhang, Highly Responsive and Ultrasensitive Non-Enzymatic Electrochemical Glucose Sensor Based on Au Foam. Sensors, 19 (2019) 1203-1217.

DOI: 10.3390/s19051203

Google Scholar

[14] F. Zhou, W. Jing, S. Liu, Q. Mao, Y. Xu, F. Han, Z. Wei, Z. Jiang, Electrodeposition of gold nanoparticles on ZnO nanorods for improved performance of enzymatic glucose sensors. Mater. Sci. Semicond., 105 (2020) 1047-1058.

DOI: 10.1016/j.mssp.2019.104708

Google Scholar

[15] P. Balasubramanian, M. Annalakshmi, S.M. Chen, T.W. Chen, Ultrasensitive Non-Enzymatic Electrochemical Sensing of Glucose in Noninvasive Samples Using Interconnected Nanosheets-like NiMnO3 as a Promising Electrocatalyst. Sens. Actuators, B 299 (2019) 1269-1279.

DOI: 10.1016/j.snb.2019.126974

Google Scholar

[16] R. Batool, A. Rhouati, M.H. Nawaz, A. Hayat, J.L. Marty, A Review of the Construction of Nano-Hybrids for Electrochemical Biosensing of Glucose, Biosensors, 9 (2019) 46-57.

DOI: 10.3390/bios9010046

Google Scholar

[17] R. Umapathi, S.M. Ghoreishian, G.M. Rani, Y. Cho, Y.S. Huh, Review-Emerging Trends in the Development of Electrochemical Devices for the On-Site Detection of Food Contaminants, ECS Sensor Plus, 1 (2022a) 574-601.

DOI: 10.1149/2754-2726/ac9d4a

Google Scholar

[18] R. Umapathi, S.M. Ghoreishian, S. Sonwal, G.M. Rani, Y.S. Huh, Portable electrochemical sensing methodologies for on-site detection of pesticide residues in fruits and vegetables. Coord, Chemical Review, 453 (2022b) 284-305.

DOI: 10.1016/j.ccr.2021.214305

Google Scholar

[19] K.L. Mohamad, N. Nor, N.H. Ramli, H. Poobalan, K. Qi Tan, K. Abdul Razak, Recent Advancement in Disposable Electrode Modified with Nanomaterials for Electrochemical Heavy Metal Sensors, Critical Revieew Analytical Chemistry, 45 (2021) 25-36.

DOI: 10.1080/10408347.2021.1950521

Google Scholar

[20] K. Shim, W.C. Lee, M.S. Park, M. Shahabuddin, Y. Yamauchi, S.A. Hossain, Y.B. Shim, J.H. Kim, Au decorated core-shell structured Au@Pt for the glucose oxidation reaction. Sens. Actuators, B 278 (2019) 88−96.

DOI: 10.1016/j.snb.2018.09.048

Google Scholar

[21] Y.S. Wu, Z.W. Wu, C.L. Lee, Concave Pd core/island Pt shell nanoparticles: Synthesis and their promising activities toward neutral glucose oxidation. Sens. Actuators, B 281 (2019) 1−7.

DOI: 10.1016/j.snb.2018.10.042

Google Scholar

[22] A.C. Fereshteh Jalilian, K. Sadrjavadi, A. Fattahi, Y. Shokoohinia, Green synthesized silver nanoparticle from Allium ampeloprasum aqueous extract: Characterization, antioxidant activities, antibacterial and cytotoxicity effects, Adv Powder Technol 31 (2020) 1323-1332.

DOI: 10.1016/j.apt.2020.01.011

Google Scholar

[23] S. Nabavifard, S. Jalili, F. Rahmati, Y. Vasseghian, G.A.M. Ali, Application of Dendrimer/Gold Nanoparticles in Cancer Therapy, A Review. J. Inorg. Organomet. Polym Mater., 30 (2020) 4231-4244.

DOI: 10.1007/s10904-020-01705-4

Google Scholar

[24] C.H. Su, C.L. Sun, S.Y. Peng, J.J. Wu, Y.H. Huang, Y.C. Liao, High performance non-enzymatic graphene-based glucose fuel cell operated under moderate temperatures and a neutral solution, J. Taiwan Inst. Chem. Eng. 95 (2019) 48−54

DOI: 10.1016/j.jtice.2018.09.034

Google Scholar

[25] M. Kiani, N. Rabiee, M. Bagherzadeh, A.M. Ghadiri, Y. Fatahi, Improved Green Biosynthesis of Chitosan Decorated Ag- and Co3O4-Nanoparticles: A Relationship Between Surface Morphology, Photocatalytic and Biomedical Applications, Nanomed Nanotechnol Biol Med., 32 (2021) 1023-1031.

DOI: 10.1016/j.nano.2020.102331

Google Scholar

[26] J. Khan, K. Saeed, I. Khan, Nanoparticles: Properties, Applications and Toxicities. . Arab J Chem., 12 (2019) 908-931.

Google Scholar

[27] B.G. Amin, J. Masud, M. Nath, Non-enzymatic glucose sensor based on CoNi2Se4/rGO nanocomposite with Ultrahigh sensitivity at low working potential. J. Mater. Chem. B 7 (2019) 2338−2348.

DOI: 10.1039/c9tb00104b

Google Scholar

[28] V. Morales-Lozoya, H. Espinoza-Gómez, Z.L. Flores-López, E.L. Sotelo-Barrera, A. Núñez-Rivera, Study of the effect of the different parts of Morinda citrifolia L. (noni) on the green synthesis of silver nanoparticles and their antibacterial activity, Appl. Surf. Sci., 537 (2021) 1478- 1485.

DOI: 10.1016/j.apsusc.2020.147855

Google Scholar

[29] L. Sakalauskiene, A. Popov, A. Kausaite-Minkstimiene, A. Ramanavicius, A. Ramanaviciene, The Impact of Glucose Oxidase Immobilization on Dendritic Gold Nanostructures on the Performance of Glucose Biosensors. Biosensors, 12 (2022) 320-332

DOI: 10.3390/bios12050320

Google Scholar

[30] R.B. Devika, B.P. Varsha, Studies on Effect of pH on Cross-linking of Chitosan With Sodium Tripolyphosphate: A Technical Note. Pharmaceutical Science Technology, 7(2) (2006) 1-6

Google Scholar

[31] M.D. Leonida, S. Banjade, T. Vo, G. Anderle, G.J. Haas, N. Philips, Nanocomposite materials with antimicrobial activity based on chitosan. Inteernational Journal of Nano and Biomaterials, 3(4) (2011) 316-334.

DOI: 10.1504/ijnbm.2011.045885

Google Scholar

[32] N. Liu, X. Xiang, M. Sun, P. Li, H. Qin, H. Liu, Y. Zhou, L. Wang, L. Wu, J. Zhu, Flexible hydrogel non-enzymatic QCM sensor for continuous glucose monitoring. Biosens. Bioelectron. X 10 (2022) 100-110.

DOI: 10.1016/j.biosx.2022.100110

Google Scholar

[33] A. Dabhade, S. Jayaraman, B. Paramasivan, Development of glucose oxidase-chitosan immobilized paper biosensor using screen-printed electrode for amperometric detection of Cr(VI) in water, Biotech., 11 (2021) 183-195.

DOI: 10.1007/s13205-021-02736-5

Google Scholar

[34] R. Eslami, N. Azizi, S.R. Ghaffarian, M. Mehrvar, H. Zarrin, Highly sensitive and selective non-enzymatic measurement of glucose using arraying of two separate sweat sensors at physiological pH. Electrochim. Acta., 404 (2022) 1397-1412.

DOI: 10.1016/j.electacta.2021.139749

Google Scholar

[35] H. Wang, W. Zhu, T. Xu, Y. Zhang, Y. Tian, X. Liu, J. Wang, M. Ma, An integrated nanoflower-like MoS2@CuCo2O4 heterostructure for boosting electrochemical glucose sensing in beverage. Food Chem., 396 (2022) 1336-1346.

DOI: 10.1016/j.foodchem.2022.133630

Google Scholar

[36] B. Mireia, G. Laura, G. Mayte, G. Marta, Q. Alfredo, Low-Denaturazing Glucose Oxidase Immobilization onto Graphite Electrodes by Incubation in Chitosan Solutions, Polysaccharide, 3 (2022) 388–400.

DOI: 10.3390/polysaccharides3020023

Google Scholar

[37] Borchert, H., Shevchenko, E.V., Robert, A., Mekis, I., Kornowski, A., Grubel, G. and Weller, H. 2005. Silver nanoparticles: Large scale solvothermal synthesis and optical properties. Langmuir, 21, 1931-1936.

DOI: 10.1021/la0477183

Google Scholar

[38] Jyoti, K., Baunthiyal, M. and Singh, A. 2016. Characterization of silver nanoparticles synthesized using Urtica dioica Linn. leaves and their synergistic effects with antibiotics. Journal of Radiation Research Applied Science, 9(3), 217–227.

DOI: 10.1016/j.jrras.2015.10.002

Google Scholar

[39] Dubey, S.P., Lahtinen, M. and Sillanpää, M. 2010. Tansy fruit mediated greener synthesis of silver and gold nanoparticles. Process Biochemical, 45(7), 1065–1071.

DOI: 10.1016/j.procbio.2010.03.024

Google Scholar

[40] Ashok, K. T. and Vikas, R. 2010. Cross-linked Chitosan films: Effect of cross-linking Density on swelling parameters. Pakistan Journal of Pharmaceutical Sciences, 23 (4), 443-448.

Google Scholar

[41] Kemp, W. 1991. Infrared Spectroscopy. Macmillan Press, London, pp.19-56.

Google Scholar

[42] Rekha, M.R. and Sharma, C.P. 2008. pH sensitive succinyl chitosan microarticles: a preliminary investigation towards oral insulin delivery. Trends in Biomaterials & Artificial Organs, 21(2), 107–115.

Google Scholar

[43] Modrzejewska, Z., Zarzychi, R. and Sielski, J. 2010. Synthesis of silver nanoparticles in a chitosan solution. Progress on Chemistry and application of chitin, 15, 63-72.

Google Scholar

[44] Mallikarjun, K., Narsimha, G., Dillip, G., Praveen, B., Shreedhar, B. and Lakshmi, S. 2011. Green synthesis of silver nanoparticles using Ocimum leaf extract and their characterization. Digest Journal of Nanomaterial Biostructure, 6, 181–186.

Google Scholar

[45] Wani, I.A., Ganguly, A., Ahmed, J. and Ahmed, T. 2011. Silver nanoparticles: ultrasonic wave assisted synthesis, optical characterization and surface area studies. Material Letters, 65(3), 520-522.

DOI: 10.1016/j.matlet.2010.11.003

Google Scholar

[46] Vidhu, V.K., Aromal, S. and Philip, D. 2011. Green synthesis of silver nanoparticles using Macrotylomauniflorum. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 83, 392–397.

DOI: 10.1016/j.saa.2011.08.051

Google Scholar

[47] F. Sun, X. Wang, Z. You, H. Xia, S. Wang, C. Jia, Y. Zhou, J. Zhang, Sandwich structure confined gold as highly sensitive and stable electrochemical non-enzymatic glucose sensor with low oxidation potential., J. Mater. Sci. Technol., 123 (2022) 113–122.

DOI: 10.1016/j.jmst.2022.01.014

Google Scholar

[48] Baozhan, Z., Guangyue, L., Aiwen, Y., Yanling, X., Martin, M.F. 2014. A sensitive AgNPs/CuOnanofibers non-enzymatic glucose sensor based on electrospinning technology, Sensors and Actuators B: Chemical 195, 431-438.

DOI: 10.1016/j.snb.2014.01.046

Google Scholar

[49] H.A. Wytse, C. Yejung, S. Kwang-dong, P. Yuanzhe, Simple synthesis of CuO/Ag nanocomposite electrode using precursor ink for non-enzymatic electrochemical hydrogen peroxide sensing, Sensors and Actuators B: Chemical, 255 (2018) 1995-2001.

DOI: 10.1016/j.snb.2017.08.217

Google Scholar

[50] A.H. Shah, A. Shah, U.A. Rana, S.U.D. Khan, H. Hussain, S.B. Khan, R. Qureshi, B.A. adshah, pH Dependent electrochemical characterization, computational studies of thermodynamic, kinetics and analytical parameters of two phenazine, Electroanalytical, 26 (2017) 2292-2301.

Google Scholar

[51] X. Zhang, J. Zhao, C. Wang, L. Zhu, X. Pan, Y. Liu, J. Li, X. Guo, D. Chen, Measurement of sucrose in beverages using a blood glucose meter with cascade-catalysis enzyme particle, Food Chemistry, 398 (2023) 933-951.

DOI: 10.1016/j.foodchem.2022.133951

Google Scholar

[52] Laviron, E. 1979. General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems. Journal of Electroanalytical Chemistry and Electrochemistry, 101, 19–28.

DOI: 10.1016/s0022-0728(79)80075-3

Google Scholar

[53] D. Thatikayala, D. Ponnamma, K.K. Sadasivuni, J.J. Cabibihan, A.K. Al-Ali, R.A. Malik, B. Min, Progress of Advanced Nanomaterials in the Non-Enzymatic Electrochemical Sensing of Glucose and H2O2. Biosensors, 10 (2020) 151-162.

DOI: 10.3390/bios10110151

Google Scholar

[54] Wu, S. 2010. Direct electrochemistry of glucose oxidase assembled on graphene and application to glucose detection. Electrochimical Acta, 55(28), 8606-8614.

DOI: 10.1016/j.electacta.2010.07.079

Google Scholar

[55] Chen, J.; Zheng, X.; Li, Y.; Zheng, H.; Liu, Y.; Suye, S.-i. A Glucose Biosensor Based on Direct Electron Transfer of Glucose Oxidase on PEDOT Modified Microelectrode. J. Electrochem. Soc., 167(2020) 675-687.

DOI: 10.1149/1945-7111/ab7e26

Google Scholar

[56] Z. Yin, Immobilization of Glucose oxidase and Catalase for the Fabrication of Biofuel cell, (2018.) M.Sc. Thesis, North Carolina State University.

Google Scholar