p.1
p.11
p.23
p.33
p.53
p.61
p.85
Photoluminescent Polymer Nanocomposites: Innovative Materials for Enhanced Light Management and Crop Yield Optimization
Abstract:
Light is essential for plant growth and plays a crucial role in photosynthesis. However, sunlight often falls short of ensuring photosynthesis efficiency due to its wavelength composition, changing weather conditions, and the unique characteristics of plants, which create challenges for agricultural productivity. To address this, many innovative farming practices have been developed, including controlled environment agriculture, which creates microclimates that optimize conditions for plants. To improve light efficiency in these microclimates, researchers have turned to luminescent and light-conversion materials. These materials are incorporated into polymers to convert underutilized wavelengths, such as UV and blue light, into photosynthetically active radiation (PAR). Luminescent materials like fluorescent pigments, quantum dots, and rare-earth-doped compounds, when incorporated into polymers, produce films that enhance light absorption and improve spectral energy distribution. They have shown great potential to increase crop yield, biomass, and the quality of fruits and vegetables. Despite their potential, challenges remain on the path to widespread adoption. Environmental impact, scalability, and economic feasibility are significant concerns. This review explores the integration and functionality of photoluminescent polymer nanocomposites as light-converting materials. It also examines current limitations while offering future perspectives on how these materials can be used for sustainable light solutions to improve agricultural productivity.
Info:
Periodical:
Pages:
61-83
Citation:
Online since:
March 2025
Permissions:
Citation:
* - Corresponding Author
[1] Y. Liu, Z. Gui, and J. Liu, Research Progress of Light Wavelength Conversion Materials and Their Applications in Functional Agricultural Films, Polymers (Basel) 14 (2022) 1-17.
[2] C. Mony, P. Kaur, J.E. Rookes, D.L. Callahan, S.V. Eswaran, W. Yang, and P.K. Manna, Nanomaterials for enhancing photosynthesis: interaction with plant photosystems and scope of nanobionics in agriculture, Environ. Sci.: Nano 9 (2022) 3659-3683.
DOI: 10.1039/d2en00451h
[3] M.W. van Iersel, G. Weaver, M.T. Martin, R.S. Ferrarezi, E. Mattos, and M. Haidekker, A Chlorophyll Fluorescence-based Biofeedback System to Control Photosynthetic Lighting in Controlled Environment Agriculture, J. Am. Soc. Hort. Sci. 141 (2016) 169-176.
[4] H. Wu, and Z. Li, Recent advances in nano-enabled agriculture for improving plant performance, Crop J. 10 (2022) 1-12.
[5] K. Benke, and B. Tomkins, Future food-production systems: vertical farming and controlled-environment agriculture, Sustain.: Sci. Pract. Policy 13 (2017) 13-26.
[6] Y. Chang, H. Cui, Y. Wang, C. Li, J. Wang, M. Jin, Y. Luo, Y. Li, and Z. Wang, Silicon Spraying Enhances Wheat Stem Resistance to Lodging under Light Stress, Agronomy 13 (2023) 1-12.
[7] N. Engler, and M. Krarti, Review of energy efficiency in controlled environment agriculture, Renew. Sust. Energ. 141 (2021) 110786-110786.
[8] S. Thomaier, K. Specht, D. Henckel, A. Dierich, R. Siebert, U.B. Freisinger, and M. Sawicka, Farming in and on urban buildings: Present practice and specific novelties of Zero-Acreage Farming (ZFarming), Renew. Agr. Food Syst. 30 (2015) 43-54.
[9] D.C.J. Neo, M.M.X. Ong, Y.Y. Lee, E.J. Teo, Q. Ong, H. Tanoto, J. Xu, K.S. Ong, and V. Suresh, Shaping and Tuning Lighting Conditions in Controlled Environment Agriculture: A Review, ACS Agric. Sci. Technol. 2 (2022) 3-16.
[10] K. Sartison, and M. Artmann, Edible cities – An innovative nature-based solution for urban sustainability transformation? An explorative study of urban food production in German cities, Urban For. Urban Green. 49 (2020) 1-15.
[11] M.W. van Iersel, Optimizing LED Lighting in Controlled Environment Agriculture, Springer Singapore, Singapore, 2017, pp.59-80.
[12] H.A. Ahmed, T. Yu-Xin, and Y. Qi-Chang, Optimal control of environmental conditions affecting lettuce plant growth in a controlled environment with artificial lighting: A review, S. Afr. J. Bot. 130 (2020) 75-89.
[13] S. Eberhard, G. Finazzi, and F.-A. Wollman, The Dynamics of Photosynthesis, Annu. Rev. Genet. 42 (2008) 463-515.
[14] J.R. Evans, Improving Photosynthesis, Plant Physiol. 162 (2013) 1780-1793.
[15] J. Lynch, P. Marschner, and Z. Rengel, Effect of Internal and External Factors on Root Growth and Development, Elsevier, 2012, pp.331-346.
[16] E. Kaiser, A. Morales, J. Harbinson, J. Kromdijk, E. Heuvelink, and L.F.M. Marcelis, Dynamic photosynthesis in different environmental conditions, J. Exp. Bot. 66 (2015) 2415-2426.
DOI: 10.1093/jxb/eru406
[17] H.W. Choi, From the Photosynthesis to Hormone Biosynthesis in Plants, Plant Pathol. J. 40 (2024) 99-105.
[18] T.D. Sharkey, The end game(s) of photosynthetic carbon metabolism, Plant Physiol. 195 (2024) 67-78.
[19] I. Arora, H. Chawla, A. Chandra, S. Sagadevan, and S. Garg, Advances in the strategies for enhancing the photocatalytic activity of TiO2: Conversion from UV-light active to visible-light active photocatalyst, Inorg. Chem. Commun. 143 (2022) 1-35.
[20] E. Austin, A.N. Geisler, J. Nguyen, I. Kohli, I. Hamzavi, H.W. Lim, and J. Jagdeo, Visible light. Part I: Properties and cutaneous effects of visible light, J. Am. Acad. Dermatol. 84 (2021) 1219-1231.
[21] S. Eichhorn Bilodeau, B.S. Wu, A.S. Rufyikiri, S. MacPherson, and M. Lefsrud, An Update on Plant Photobiology and Implications for Cannabis Production, Front. Plant Sci. 10 (2019) 296-310.
[22] G. Govindjee, On the evolution of the concept of two light reactions and two photosystems for oxygenic photosynthesis: A personal perspective, Photosynthetica 61 (2023) 37-47.
DOI: 10.32615/ps.2023.006
[23] Pazuki A., A.F.P. M., G. E., and G. S., Plant Responses to Extended Photosynthetically Active Radiation (EPAR), APAR 7 (2017) 313-318.
[24] M. Veena, P.P. Sameena, N.G. Sarath, L. Noble, K.P.R. Aswathi, M.S. Amritha, R. Johnson, J.M. Joel, K.S. Anjitha, H.J.M. Hou, and J.T. Puthur, Revelations on photosystem II, thermoluminescence, and artificial photosynthesis: a retrospective of Govindjee from fundamentals to applications, Physiol. Mol. Biol. Plants 29 (2023) 1225-1238.
[25] R.S.d. Campos, E. Costa, D.F. Cavalcante, R.A. Freitas, and F.F.d.S. Binotti, Ornamental cherry tomatoes in different protected environments and reflector materials in cultivation Bench, Rev. Caatinga 36 (2023) 9-20.
[26] E. Costa, R.S.R. Reche, A.G.d. Silva, F.F.d.S. Binotti, M.B. Martins, and T. Zoz, Ornamental Pepper on Reflective Bench under Protected Environments, Eng. Agric. 41 (2021) 271-278.
[27] H.-D. Kim, Y.-J. Choi, E.-Y. Bae, B.-I. Je, and J.-S. Kang, The Effects of Artificial Light Sources on Lettuce Seedling Vigor and Growth, J. Environ. Sci. 33 (2024) 305-322.
[28] K. Das, and A. Roychoudhury, Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants, Front. Environ. Sci. 2 (2014) 1-13.
[29] B. Demmig-Adams, C.M. Cohu, O. Muller, and W.W. Adams, Modulation of photosynthetic energy conversion efficiency in nature: from seconds to seasons, Photosynth. Res. 113 (2012) 75-88.
[30] K.-J. Dietz, Efficient high light acclimation involves rapid processes at multiple mechanistic levels, J. Exp. Bot. 66 (2015) 2401-2414.
DOI: 10.1093/jxb/eru505
[31] J.-D. Rochaix, Regulation and Dynamics of the Light-Harvesting System, Annu. Rev. Plant Biol. 65 (2014) 287-309.
[32] N.B. Claypool, and J.H. Lieth, Physiological responses of pepper seedlings to various ratios of blue, green, and red light using LED lamps, Sci. Hortic.-Amsterdam 268 (2020) 1-10.
[33] M. Adibian, Y. Hamidoghli, M. Ghasemnezhad, and S. Aliniaeifard, Effects of combined Red and Blue light spectra as supplemental light on yield and fruit quality of sweet pepper, JHPR 6 (2023) 317-330.
[34] M.J. Usigbe, S. Asem-Hiablie, D.D. Uyeh, O. Iyiola, T. Park, and R. Mallipeddi, Enhancing resilience in agricultural production systems with AI-based technologies, Environ. Dev. Sustainability 26 (2023) 21955-21983.
[35] F.M. Haque, and S.M. Grayson, The synthesis, properties and potential applications of cyclic polymers, Nat. Chem. 12 (2020) 433-444.
[36] S.L. Kristufek, K.T. Wacker, Y.-Y.T. Tsao, L. Su, and K.L. Wooley, Monomer design strategies to create natural product-based polymer materials, Nat. Prod. Rep. 34 (2017) 433-459.
DOI: 10.1039/c6np00112b
[37] J.K. Szymański, Y.M. Abul-Haija, and L. Cronin, Exploring Strategies To Bias Sequence in Natural and Synthetic Oligomers and Polymers, Acc. Chem. Res. 51 (2018) 649-658.
[38] L.H. Sperling, History of Interpenetrating Polymer Networks Starting with Bakelite-Based Compositions, 100+ Years of Plastics. Leo Baekeland and Beyond, 2011, pp.69-82.
[39] S. Ramakrishnan, Condensation polymerization, Resonance 22 (2017) 355-368.
[40] E. Saldívar‐Guerra, and E. Vivaldo‐Lima, Introduction to Polymers and Polymer Types, Wiley, 2013, pp.1-14.
[41] G. Shao, A. Li, Y. Liu, B. Yuan, and W. Zhang, Branched Polymers: Synthesis and Application, Macromolecules 57 (2024) 830-846.
[42] C. Maraveas, Environmental Sustainability of Plastic in Agriculture, Agriculture 10 (2020) 310-310.
[43] I. Sa'adu, and A. Farsang, Plastic contamination in agricultural soils: a review, Environ. Sci. Eur. 35 (2023) 1-13.
[44] I. Sa'adu, and A. Farsang, Greenhouse farming as a source of macroplastic and microplastics contamination in agricultural soils: a case study from Southeast-Hungary, Agrokem. Talajt. 71 (2022) 43-57.
[45] H. Zhang, X. Yang, K. Wang, J. Cui, C.J. Ritsema, C. Yan, X. Liu, and V. Geissen, Macro- and micro-plastic accumulation in soils under different intensive farming systems: A case study in Quzhou county, the North China Plain, Environ. Pollut. 364 (2025) 1-10.
[46] P. Riga, and L. Benedicto, Effects of light-diffusing plastic film on lettuce production and quality attributes, Span. J. Agric. Res. 15 (2017) 1-11.
[47] L. Xu, L. Yu, X. Jiang, Y. Zhao, and L. Xia, Effect of Polyolefin Film and Light Transition Film on the Growth of Lettuce, J. Agric. Sci. 10 (2018) 1-5.
[48] Z. Steinmetz, C. Wollmann, M. Schaefer, C. Buchmann, J. David, J. Tröger, K. Muñoz, O. Frör, and G.E. Schaumann, Plastic mulching in agriculture. Trading short-term agronomic benefits for long-term soil degradation?, Sci. Total Environ. 550 (2016) 690-705.
[49] K.H.D. Tang, Microplastics in agricultural soils in China: Sources, impacts and solutions, Environ Pollut 322 (2023) 1-10.
[50] A.L. Andrady, P.W. Barnes, J.F. Bornman, T. Gouin, S. Madronich, C.C. White, R.G. Zepp, and M.A.K. Jansen, Oxidation and fragmentation of plastics in a changing environment; from UV-radiation to biological degradation, Sci. Total Environ. 851 (2022) 1-9.
[51] P. Rizzarelli, M. Rapisarda, L. Ascione, F.D. Innocenti, and F.P. La Mantia, Influence of photo-oxidation on the performance and soil degradation of oxo- and biodegradable polymer-based items for agricultural applications, Polym. Degrad. Stab. 188 (2021) 1-19.
[52] G.A. El-Hiti, D.S. Ahmed, E. Yousif, O.S.A. Al-Khazrajy, M. Abdallh, and S.A. Alanazi, Modifications of Polymers through the Addition of Ultraviolet Absorbers to Reduce the Aging Effect of Accelerated and Natural Irradiation, Polymers (Basel) 14 (2021) 1-16.
[53] P. Dang, D. Liu, G. Li, A.A. Al Kheraif, and J. Lin, Recent Advances in Bismuth Ion‐Doped Phosphor Materials: Structure Design, Tunable Photoluminescence Properties, and Application in White LEDs, Adv. Opt. Mater. 8 (2020) 1-12.
[54] E. Glais, F. Massuyeau, and R. Gautier, Tuning the Oxidation States of Dopants: A Strategy for the Modulation of Material Photoluminescence Properties, Chem. Eur. J. 27 (2021) 1-17.
[55] E.I. Madirov, V.A. Konyushkin, A.N. Nakladov, P.P. Fedorov, T. Bergfeldt, D. Busko, I.A. Howard, B.S. Richards, S.V. Kuznetsov, and A. Turshatov, An up-conversion luminophore with high quantum yield and brightness based on BaF2:Yb3+,Er3+ single crystals, J. Mater. Chem. C 9 (2021) 3493-3503.
DOI: 10.1039/d1tc00104c
[56] C. Würth, S. Fischer, B. Grauel, A.P. Alivisatos, and U. Resch-Genger, Quantum Yields, Surface Quenching, and Passivation Efficiency for Ultrasmall Core/Shell Upconverting Nanoparticles, J. Am. Chem. Soc. 140 (2018) 4922-4928.
DOI: 10.1021/jacs.8b01458
[57] D.V. Yanykin, D.E. Burmistrov, A.V. Simakin, J.A. Ermakova, and S.V. Gudkov, Effect of Up-Converting Luminescent Nanoparticles with Increased Quantum Yield Incorporated into the Fluoropolymer Matrix on Solanum lycopersicum Growth, Agronomy 12 (2022) 108-108.
[58] S.K. Gupta, M.A. Penilla Garcia, J.P. Zuniga, M. Abdou, and Y. Mao, Visible and ultraviolet upconversion and near infrared downconversion luminescence from lanthanide doped La2Zr2O7 nanoparticles, J. Lumin. 214 (2019) 1-21.
[59] T. Matsubara, and T. Yamashita, Remote Optogenetics Using Up/Down-Conversion Phosphors, Front. Mol. Biosci. 8 (2021) 1-10.
[60] M. Sheoran, P. Sehrawat, H. Dalal, N. Kumari, and R.K. Malik, Realization of orange-red emanation from novel oxide-based BaSrY4O8:Sm3+ nanocrystals for optoelectronic applications, J. Mater. Sci.: Mater. Electron. 32 (2021) 23601-23613.
[61] Y. Zhu, Z. Pang, J. Wang, M. Ge, S. Sun, Z. Hu, J. Zhai, J. Gao, and F. Jiang, Effect of light conversion agent on luminous properties of a new down-converting material SrAl2O4:Eu2+,Dy3+/light conversion agent, J. Rare Earths 34 (2016) 483-488.
[62] Y. Wang, Y. Yu, W. Liu, L. Ren, and G. Ge, Exploration of Highly Efficient Blue–Violet Light Conversion Agents for an Agricultural Film Based on Structure Optimization of Triphenylacrylonitrile, J. Agric. Food Chem. 66 (2018) 13295-13302.
[63] K.-W. Kim, G.-H. Kim, S.-H. Kwon, H.-I. Yoon, J.-E. Son, and J.-H. Choi, Synthesis and photophysical properties of blue-emitting fluorescence dyes derived from naphthalimide derivatives containing a diacetylene linkage group, Dyes Pigm. 158 (2018) 353-361.
[64] Q. Qiao, Z.-Q. Shen, X.-S. Wu, X.-Z. Wang, W.-B. Pei, S.-X. Liu, and X.-M. Ren, Glowing kaolinite intercalated with N-Methyl imidazole and Eu3+/Tb3+ salts and potential application in UV-to-red light conversion, Appl. Clay Sci. 186 (2020) 1-9.
[65] W. Wu, Z. Zhang, R. Dong, G. Xie, J. Zhou, K. Wu, H. Zhang, Q. Cai, and B. Lei, Characterization and properties of a Sr2Si5N8:Eu2+-based light-conversion agricultural film, J. Rare Earths 38 (2020) 1-7.
[66] D. Wang, H. Wang, B. Qian, H. Zou, K. Zheng, X. Zhou, Y. Song, and Y. Sheng, Preparation of hydrophobic calcium carbonate phosphors and its application in fluorescent films, J. Lumin. 219 (2020) 1-8.
[67] Y. Zhou, C. Li, and Y. Wang, Crystal‐Field Engineering Control of an Ultraviolet–Visible‐Responsive Near‐Infrared‐Emitting Phosphor and Its Applications in Plant Growth, Night Vision, and NIR Spectroscopy Detection, Adv. Opt. Mater. 10 (2022) 1-12.
[68] M.O. Paskhin, D.V. Yanykin, and S.V. Gudkov, Current Approaches to Light Conversion for Controlled Environment Agricultural Applications: A Review, Horticulturae 8 (2022) 1-20.
[69] A. Mohammadpour-Haratbar, Y. Zare, M.T. Munir, K.Y. Rhee, and S.-J. Park, A review of ternary polymer nanocomposites containing clay and calcium carbonate and their biomedical applications, Nanotechnol. Rev. 13 (2024) 1-18.
[70] C.I. Idumah, M. Zurina, J. Ogbu, J.U. Ndem, and E.C. Igba, A review on innovations in polymeric nanocomposite packaging materials and electrical sensors for food and agriculture, Compos. Interfaces 27 (2020) 1-72.
[71] S. Yuan, F. Shen, C.K. Chua, and K. Zhou, Polymeric composites for powder-based additive manufacturing: Materials and applications, Prog. Polym. Sci. 91 (2019) 141-168.
[72] X. Peng, B. Wang, X. Wang, B. Ni, and Z. Zuo, Effects of Different Colored Light-quality Selective Plastic Films on Growth, Photosynthetic Abilities, and Fruit Qualities of Strawberry, Hortic. Sci. Technol. 38 (2020) 462-473.
[73] Y. Choi, Y. Choi, O.H. Kwon, and B.S. Kim, Carbon Dots: Bottom‐Up Syntheses, Properties, and Light‐Harvesting Applications, Chem. Asian J. 13 (2018) 1-15.
[74] B. Wang, J. Li, Z. Tang, B. Yang, and S. Lu, Near-infrared emissive carbon dots with 33.96% emission in aqueous solution for cellular sensing and light-emitting diodes, Sci. Bull. 64 (2019) 1-19.
[75] Y. Li, X. Xu, B. Lei, J. Zhuang, X. Zhang, C. Hu, J. Cui, and Y. Liu, Magnesium-nitrogen co-doped carbon dots enhance plant growth through multifunctional regulation in photosynthesis, Chem. Eng. J. 422 (2021) 1-10.
[76] X. Xu, X. Mao, J. Zhuang, B. Lei, Y. Li, W. Li, X. Zhang, C. Hu, Y. Fang, and Y. Liu, PVA-Coated Fluorescent Carbon Dot Nanocapsules as an Optical Amplifier for Enhanced Photosynthesis of Lettuce, ACS Sustain. Chem. Eng. 8 (2020) 3938-3949.
[77] S. Chandra, S. Pradhan, S. Mitra, P. Patra, A. Bhattacharya, P. Pramanik, and A. Goswami, High throughput electron transfer from carbon dots to chloroplast: a rationale of enhanced photosynthesis, Nanoscale 6 (2014) 3647-3655.
DOI: 10.1039/c3nr06079a
[78] W. Li, S. Wu, H. Zhang, X. Zhang, J. Zhuang, C. Hu, Y. Liu, B. Lei, L. Ma, and X. Wang, Enhanced Biological Photosynthetic Efficiency Using Light-Harvesting Engineering with Dual-Emissive Carbon Dots, Adv. Funct. Mater. 28 (2018) 1-11.
[79] J. He, Y. He, J. Zhuang, H. Zhang, B. Lei, and Y. Liu, Luminescence properties of Eu3+/CDs/PVA composite applied in light conversion film, Opt. Mater. 62 (2016) 1-7.
[80] B. Kumar Barman, T. Nagao, and K.K. Nanda, Dual roles of a transparent polymer film containing dispersed N-doped carbon dots: A high-efficiency blue light converter and UV screen, Appl. Surf. Sci. 510 (2020) 1-14.
[81] Y. Jiang, C. Yan, H. Zhang, M. Wu, S. Zheng, Y. Zhang, and L. Xu, Biodegradable Polylactide/Rare Earth Complexes in Light Conversion Agricultural Films, Coatings 11 (2021) 1-4.
[82] C.H. Parrish, 2nd, D. Hebert, A. Jackson, K. Ramasamy, H. McDaniel, G.A. Giacomelli, and M.R. Bergren, Optimizing spectral quality with quantum dots to enhance crop yield in controlled environments, Commun. Biol. 4 (2021) 124-138.
[83] W. Zhang, J. He, X. Yin, L. Wang, R. Chen, Y. Wang, and X. Pang, One-pot double in-situ fabrication of transparent semi-aromatic polyamide nanocomposites with upconversion nanoparticles, Compos. Commun. 20 (2020) 1-5.
[84] B. De, M. Kumar, B.B. Mandal, and N. Karak, An in situ prepared photo-luminescent transparent biocompatible hyperbranched epoxy/carbon dot nanocomposite, RSC Adv. 5 (2015) 74692-74704.
DOI: 10.1039/c5ra12131k
[85] S. Shi, H. Lv, Y. Ge, Y. Wang, S. Xu, and C. Geng, One-pot synthesis of CsPbBr3 nanocrystals in methyl methacrylate: a kinetic study, in situ polymerization, and backlighting applications, J. Mater. Chem. C 11 (2023) 5846-5856.
DOI: 10.1039/d3tc00515a
[86] J. Jang, D.-E. Yoon, S.-M. Kang, Y.H. Kim, I. Lee, H. Lee, Y.H. Kim, D.C. Lee, and B.-S. Bae, Exceptionally stable quantum dot/siloxane hybrid encapsulation material for white light-emitting diodes with a wide color gamut, Nanoscale 11 (2019) 14887-14895.
DOI: 10.1039/c9nr04517a
[87] X. Guo, C.F. Wang, L.H. Mao, J. Zhang, Z.Y. Yu, and S. Chen, Encodable multiple-fluorescence CdTe@carbon nanoparticles from nanocrystal/colloidal crystal guest-host ensembles, Nanotechnology 24 (2013) 1-9.
[88] M. Lin, H.Y. Zou, T. Yang, Z.X. Liu, H. Liu, and C.Z. Huang, An inner filter effect based sensor of tetracycline hydrochloride as developed by loading photoluminescent carbon nanodots in the electrospun nanofibers, Nanoscale 8 (2016) 2999-3007.
DOI: 10.1039/c5nr08177g
[89] Z. Tian, D. Li, E.V. Ushakova, V.G. Maslov, D. Zhou, P. Jing, D. Shen, S. Qu, and A.L. Rogach, Multilevel Data Encryption Using Thermal-Treatment Controlled Room Temperature Phosphorescence of Carbon Dot/Polyvinylalcohol Composites, Adv. Sci. (Weinh.) 5 (2018) 1-7.
[90] Z. Wang, F. Yuan, X. Li, Y. Li, H. Zhong, L. Fan, and S. Yang, 53% Efficient Red Emissive Carbon Quantum Dots for High Color Rendering and Stable Warm White-Light-Emitting Diodes, Adv. Mater. 29 (2017) 1-7.
[91] Y. Liu, M. Zhang, Y. Wu, R. Zhang, Y. Cao, X. Xu, X. Chen, L. Cai, and Q. Xu, Multicolor tunable highly luminescent carbon dots for remote force measurement and white light emitting diodes, Chem. Commun. 55 (2019) 12164-12167.
DOI: 10.1039/c9cc05581a
[92] Q. Wu, X. Wang, S.A. Rasaki, T. Thomas, C. Wang, C. Zhang, and M. Yang, Yellow-emitting carbon-dots-impregnated carboxy methyl cellulose/poly-vinyl-alcohol and chitosan: Stable, freestanding, enhanced-quenching Cu2+-ions sensor, J. Mater. Chem. C 6 (2018) 4508-4515.
DOI: 10.1039/c8tc00660a
[93] Z. Zhu, R. Cheng, L. Ling, Q. Li, and S. Chen, Rapid and Large‐Scale Production of Multi‐Fluorescence Carbon Dots by a Magnetic Hyperthermia Method, Angew. Chem. Int. Ed. 59 (2020) 3099-3105.
[94] E. Mutlugun, P.L. Hernandez-Martinez, C. Eroglu, Y. Coskun, T. Erdem, V.K. Sharma, E. Unal, S.K. Panda, S.G. Hickey, N. Gaponik, A. Eychmüller, and H.V. Demir, Large-Area (over 50 cm × 50 cm) Freestanding Films of Colloidal InP/ZnS Quantum Dots, Nano Lett. 12 (2012) 1-44.
DOI: 10.1021/nl301198k
[95] G.H. Chen, C.T. Lin, P.H. Chen, T.W. Jang, and H.S. Chen, General Strategies for Preparing Hybrid Polymer/Quantum Dot Nanocomposites for Color Conversion, Nanomaterials (Basel) 13 (2023) 1-14.
DOI: 10.3390/nano13233072
[96] M. Albdiry, Effect of melt blending processing on mechanical properties of polymer nanocomposites: a review, Polym. Bull. 81 (2024) 5793-5821.
[97] S.B. Mishra, A.K. Mishra, N. Revaprasadu, K.T. Hillie, W.J.v. Steyn, E. Coetsee, and H.C. Swart, Strontium aluminate/polymer composites: Morphology, luminescent properties, and durability, J. Appl. Polym. Sci. 112 (2009) 3347-3354.
DOI: 10.1002/app.29933
[98] F. Ahangaran, and A.H. Navarchian, Recent advances in chemical surface modification of metal oxide nanoparticles with silane coupling agents: A review, Adv. Colloid Interface Sci. 286 (2020) 1-46.
[99] A.A. Ansari, A.K. Parchur, and G. Chen, Surface modified lanthanide upconversion nanoparticles for drug delivery, cellular uptake mechanism, and current challenges in NIR-driven therapies, Coord. Chem. Rev. 457 (2022) 1-38.
[100] T. Aziz, A. Ullah, H. Fan, M.I. Jamil, F.U. Khan, R. Ullah, M. Iqbal, A. Ali, and B. Ullah, Recent Progress in Silane Coupling Agent with Its Emerging Applications, J. Polym. Environ. 29 (2021) 1-17.
[101] C. Cazan, A. Enesca, and L. Andronic, Synergic Effect of TiO2 Filler on the Mechanical Properties of Polymer Nanocomposites, Polymers (Basel) 13 (2021) 1-24.
[102] G. Chakraborty, R. Padmashree, and A. Prasad, Recent advancement of surface modification techniques of 2-D nanomaterials, Mater. Sci. Eng.: B. 297 (2023) 1-22.
[103] X.Y. Du, C.F. Wang, G. Wu, and S. Chen, The Rapid and Large-Scale Production of Carbon Quantum Dots and their Integration with Polymers, Angew. Chem., Int. Ed. 60 (2021) 8585-8595.
[104] Z. Feng, K.H. Adolfsson, Y. Xu, H. Fang, M. Hakkarainen, and M. Wu, Carbon dot/polymer nanocomposites: From green synthesis to energy, environmental and biomedical applications, Sustain. Mater. Technol. 29 (2021) e00304-e00316.
[105] V.L. John, Y. Nair, and T.P. Vinod, Doping and Surface Modification of Carbon Quantum Dots for Enhanced Functionalities and Related Applications, Part. Part. Syst. Charact. 38 (2021) 1-28.
[106] T. Han, Y. Yuan, X. Liang, Y. Zhang, C. Xiong, and L. Dong, Colloidal stable quantum dots modified by dual functional group polymers for inkjet printing, J. Mater. Chem. C 5 (2017) 4629-4635.
DOI: 10.1039/c7tc00452d
[107] H. Wang, Z. Shao, M. Bacher, F. Liebner, and T. Rosenau, Fluorescent cellulose aerogels containing covalently immobilized (ZnS)x(CuInS2)1-x/ZnS (core/shell) quantum dots, Cellulose 20 (2013) 3007-3024.
[108] M. Zhou, W. Liu, C. Yang, X. Zhao, Z. Yang, X. Lu, and X. Jiang, Preparation and application of multinuclear rare earth ion doped organic complex light conversion agents, Fuhe Cailiao Xuebao/Acta Mater. Compos. Sin. 40 (2023) 2131-2139.
[109] A.V. Simakin, V.V. Ivanyuk, A.S. Dorokhov, and S.V. Gudkov, Photoconversion Fluoropolymer Films for the Cultivation of Agricultural Plants Under Conditions of Insufficient Insolation, Appl. Sci. 10 (2020) 1-10.
DOI: 10.3390/app10228025
[110] S.D. Al-Qahtani, and G.M. Al-Senani, Immobilization of rare-earth doped aluminate nanoparticles encapsulated with silica into polylactic acid-based color-tunable smart plastic window, Int. J. Biol. Macromol. 264 (2024) 130766.
[111] S. Alzahrani, K. Alkhamis, R. Felaly, F. Alkhatib, R. Pashameah, R. Shah, and N.M. El-Metwaly, Preparation of transparent photoluminescence plastic concrete integrated with lanthanide aluminate, Ceram. Int. 49 (2023) 12702-12709.
[112] A.H. Ritonga, N. Jamarun, S. Arief, H. Aziz, D.A. Tanjung, and B. Isfa, Improvement of Mechanical, Thermal, and Morphological Properties of Organo-Precipitated Calcium Carbonate Filled LLDPE/Cyclic Natural Rubber Composites, Indones. J Chem. 22 (2022) 233-241.
DOI: 10.22146/ijc.68888
[113] A.H. Ritonga, N. Jamarun, S. Arief, H. Aziz, D.A. Tanjung, B. Isfa, V. Sisca, and H. Faisal, Organic modification of precipitated calcium carbonate nanoparticles as filler in LLDPE/CNR blends with the presence of coupling agents: impact strength, thermal, and morphology, J. Mater. Res. Technol. 17 (2022) 2326-2332.
[114] A. Salabat, B.S. Mirhoseini, and F. Mirhoseini, Ionic liquid based surfactant-free microemulsion as a new protocol for preparation of visible light active poly(methyl methacrylate)/TiO2 nanocomposite, Sci. Rep. 14 (2024) 15676-15690.
[115] L. Shahkar, A. Malek Khachatourian, and A. Nemati, Fabrication and characterization of PMMA denture base nanocomposite reinforced with hydroxyapatite and multi-walled carbon nanotubes, Diamond Relat. Mater. 147 (2024) 1-12.
[116] C. Gao, H. Xu, J. Huang, B. Sun, F. Zhang, Z. Savage, C. Duggan, T. Yan, C.-h. Wu, Y. Wang, V.G.A.A. Vleeshouwers, S. Kamoun, T.O. Bozkurt, and S. Dong, Pathogen manipulation of chloroplast function triggers a light-dependent immune recognition, PNAS 117 (2020) 9613-9620.
[117] Z. Iqbal, M.S. Iqbal, A. Hashem, E.F. Abd Allah, and M.I. Ansari, Plant Defense Responses to Biotic Stress and Its Interplay With Fluctuating Dark/Light Conditions, Front. Plant Sci. 12 (2021) 1-22.
[118] Y. Saijo, and E.P.i. Loo, Plant immunity in signal integration between biotic and abiotic stress responses, New Phytol. 225 (2020) 87-104.
DOI: 10.1111/nph.15989
[119] J. Wang, X. Qiao, B. Li, B. Liu, J. Zhang, Z. Yan, P. Hao, X. Wang, Y. Liu, L. Shen, and Z. Wang, The research progress of rare earth agricultural light conversion film, Heliyon 10 (2024) e36967-e36980.
[120] H.I. Yoon, J.H. Kang, W.H. Kang, and J.E. Son, Subtle changes in solar radiation under a green-to-red conversion film affect the photosynthetic performance and chlorophyll fluorescence of sweet pepper, Photosynthetica 58 (2020) 1107-1115.
DOI: 10.32615/ps.2020.057
[121] Y. Gao, G. Li, B. Cai, Z. Zhang, N. Li, Y. Liu, and Q. Li, Effects of rare-earth light conversion film on the growth and fruit quality of sweet pepper in a solar greenhouse, Front. Plant Sci. 13 (2022) 1-11.
[122] G. Amare, and B. Desta, Coloured plastic mulches: impact on soil properties and crop productivity, Chem. Biol. Technol. Agric. 8 (2021) 1-9.
[123] K. Salama, and M. Geyer, Plastic Mulch Films in Agriculture: Their Use, Environmental Problems, Recycling and Alternatives, Environments 10 (2023) 1-25.
[124] Y. Zhao, X. Mao, S. Li, X. Huang, J. Che, and C. Ma, A Review of Plastic Film Mulching on Water, Heat, Nitrogen Balance, and Crop Growth in Farmland in China, Agronomy 13 (2023) 1-18.
[125] Y. Qi, Y. Wang, Y. Yu, Z. Liu, Y. Zhang, Y. Qi, and C. Zhou, Exploring highly efficient light conversion agents for agricultural film based on aggregation induced emission effects, J. Mater. Chem. C 4 (2016) 11291-11297.
DOI: 10.1039/c6tc04215e
[126] S. Hemming, E.A. Van Os, J. Hemming, and J.A. Dieleman, The effect of new developed fluorescent greenhouse films on the growth of Fragaria x ananassa 'Elsanta', European journal of horticultural science 71 (2006) 145-154.
[127] R.N. Khramov, V.D. Kreslavski, E.A. Svidchenko, N.M. Surin, and A.A. Kosobryukhov, Influence of photoluminophore-modified agro textile spunbond on growth and photosynthesis of cabbage and lettuce plants, Opt. Express 27 (2019) 31967-31977.
DOI: 10.1364/oe.27.031967
[128] Y. Gao, G. Li, B. Cai, Z. Zhang, N. Li, Y. Liu, and Q. Li, Effects of rare-earth light conversion film on the growth and fruit quality of sweet pepper in a solar greenhouse, Front. Plant Sci. 13 (2022) 989271.
[129] S.V. Gudkov, A.V. Simakin, N.F. Bunkin, G.A. Shafeev, M.E. Astashev, A.P. Glinushkin, M.A. Grinberg, and V.A. Vodeneev, Development and application of photoconversion fluoropolymer films for greenhouses located at high or polar latitudes, J. Photochem. Photobiol. B 213 (2020) 1-18.
[130] H. Ben Amara, S. Bouadila, H. Fatnassi, M. Arici, and A. Allah Guizani, Climate assessment of greenhouse equipped with south-oriented PV roofs: An experimental and computational fluid dynamics study, Sustain. Energy Technol. Assessments 45 (2021) 1-12.
[131] C. Campiotti, F. Dondi, A. Genovese, G. Alonzo, V. Catanese, L. Incrocci, and C. Bibbiani, Photovoltaic as Sustainable energy for Greenhouse and closed plant production system, Acta Hortic. (2008) 373-378.
[132] R. Ziessel, S. Diring, P. Kadjane, L. Charbonnière, P. Retailleau, and C. Philouze, Highly Efficient Blue Photoexcitation of Europium in a Bimetallic Pt–Eu Complex, Chem. Asian J. 2 (2007) 1-8.
[133] A.T. Nguyen, W.-H. Lin, Y.-H. Lu, Y.-D. Chiou, and Y.-J. Hsu, First demonstration of rainbow photocatalysts using ternary Cd1-xZnxSe nanorods of varying compositions, Appl. Catal. A: Gen. 476 (2014) 140-147.
[134] Y.-C. Pu, W.-T. Chen, M.-J. Fang, Y.-L. Chen, K.-A. Tsai, W.-H. Lin, and Y.-J. Hsu, Au–Cd 1−x Zn x S core–alloyed shell nanocrystals: boosting the interfacial charge dynamics by adjusting the shell composition, J. Mater. Chem. A 6 (2018) 17503-17513.
DOI: 10.1039/c8ta05539d
[135] S. Sharifi, S. Behzadi, S. Laurent, M. Laird Forrest, P. Stroeve, and M. Mahmoudi, Toxicity of nanomaterials, Chem. Soc. Rev. 41 (2012) 2323-2343.
DOI: 10.1039/c1cs15188f
[136] C.D. Spicer, C. Jumeaux, B. Gupta, and M.M. Stevens, Peptide and protein nanoparticle conjugates: versatile platforms for biomedical applications, Chem. Soc. Rev. 47 (2018) 3574-3620.
DOI: 10.1039/c7cs00877e
[137] W. Tan, W. Du, A.C. Barrios, R. Armendariz, N. Zuverza-Mena, Z. Ji, C.H. Chang, J.I. Zink, J.A. Hernandez-Viezcas, J.R. Peralta-Videa, and J.L. Gardea-Torresdey, Surface coating changes the physiological and biochemical impacts of nano-TiO2 in basil (Ocimum basilicum) plants, Environ. Pollut. 222 (2017) 64-72.
[138] E. Jez, E. Pellegrini, M.S. Lemut, M. De Nobili, and M. Contin, High doses of polypropylene and polyvinyl chloride microplastics affect the microbial community and nutrient status of vineyard soils, Front. Environ. Sci. Eng. 19 (2025) 1-17.
[139] S. Kore, and S. Dharaskar, Polymer nanocomposite films and coatings in nuclear industry, Elsevier, 2024, pp.663-690.
[140] M. Muhammed Shameem, S.M. Sasikanth, R. Annamalai, and R. Ganapathi Raman, A brief review on polymer nanocomposites and its applications, Mater. Today: Proc. 45 (2021) 1-4.
[141] M. Wypij, J. Trzcinska-Wencel, P. Golinska, G.D. Avila-Quezada, A.P. Ingle, and M. Rai, The strategic applications of natural polymer nanocomposites in food packaging and agriculture: Chances, challenges, and consumers' perception, Front. Chem. 10 (2022) 1-18.
[142] P.M.Z. Hasan, S. Saini, A.A. Melaibari, N.S. Leel, Aakansha, R. Darwesh, A.M. Quraishi, J. Singh, A.E. Kuznetsov, S.Z. Hashmi, S. Dalela, and P.A. Alvi, Tunable optical and structural characteristics with improved electrical properties of (PVA-GO-CuO) eco-friendly-polymer nanocomposites and their DFT study, Diamond Relat. Mater. 140 (2023) 1-11.
[143] C. Mukherjee, D. Varghese, J.S. Krishna, T. Boominathan, R. Rakeshkumar, S. Dineshkumar, C.V.S. Brahmananda Rao, and A. Sivaramakrishna, Recent advances in biodegradable polymers – Properties, applications and future prospects, Eur. Polym. J. 192 (2023) 1-12.
[144] M. Gouda, H.M. Abd El-Lateef, M.F. Abou Taleb, and M.M. Khalaf, Polylactic acid film embedded with phosphor nanoparticles: Photochromic and afterglow biodegradable window and concrete, J. Mol. Struct. 1300 (2024) 1-10.
[145] D. Zhang, Y. Zhang, Z. Wang, Y. Zheng, X. Zheng, L. Gao, C. Wang, C. Yang, H. Tang, and Y. Li, Biodegradable film enabling visible light excitation of Hexanuclear Europium(Ⅲ) complex for various applications, J. Lumin. 229 (2021) 1-10.
[146] S. Singh, K. Dev, S. Bhardwaj, D. Ramakanth, K.R. Singh, K.M. Poluri, K. Ghosh, and P.K. Maji, Biodegradable cellulose nanocrystal composites doped with carbon dots for packaging and anticounterfeiting applications, Nanoscale 17 (2025) 904-918.
DOI: 10.1039/d4nr03768e
[147] A. Boccolini, J. Marques-Hueso, D. Chen, Y. Wang, and B.S. Richards, Physical performance limitations of luminescent down-conversion layers for photovoltaic applications, Sol. Energy Mater. Sol. Cells 122 (2014) 8-14.