Photoluminescent Polymer Nanocomposites: Innovative Materials for Enhanced Light Management and Crop Yield Optimization

Article Preview

Abstract:

Light is essential for plant growth and plays a crucial role in photosynthesis. However, sunlight often falls short of ensuring photosynthesis efficiency due to its wavelength composition, changing weather conditions, and the unique characteristics of plants, which create challenges for agricultural productivity. To address this, many innovative farming practices have been developed, including controlled environment agriculture, which creates microclimates that optimize conditions for plants. To improve light efficiency in these microclimates, researchers have turned to luminescent and light-conversion materials. These materials are incorporated into polymers to convert underutilized wavelengths, such as UV and blue light, into photosynthetically active radiation (PAR). Luminescent materials like fluorescent pigments, quantum dots, and rare-earth-doped compounds, when incorporated into polymers, produce films that enhance light absorption and improve spectral energy distribution. They have shown great potential to increase crop yield, biomass, and the quality of fruits and vegetables. Despite their potential, challenges remain on the path to widespread adoption. Environmental impact, scalability, and economic feasibility are significant concerns. This review explores the integration and functionality of photoluminescent polymer nanocomposites as light-converting materials. It also examines current limitations while offering future perspectives on how these materials can be used for sustainable light solutions to improve agricultural productivity.

You have full access to the following eBook

Info:

* - Corresponding Author

[1] Y. Liu, Z. Gui, and J. Liu, Research Progress of Light Wavelength Conversion Materials and Their Applications in Functional Agricultural Films, Polymers (Basel) 14 (2022) 1-17.

DOI: 10.3390/polym14050851

Google Scholar

[2] C. Mony, P. Kaur, J.E. Rookes, D.L. Callahan, S.V. Eswaran, W. Yang, and P.K. Manna, Nanomaterials for enhancing photosynthesis: interaction with plant photosystems and scope of nanobionics in agriculture, Environ. Sci.: Nano 9 (2022) 3659-3683.

DOI: 10.1039/d2en00451h

Google Scholar

[3] M.W. van Iersel, G. Weaver, M.T. Martin, R.S. Ferrarezi, E. Mattos, and M. Haidekker, A Chlorophyll Fluorescence-based Biofeedback System to Control Photosynthetic Lighting in Controlled Environment Agriculture, J. Am. Soc. Hort. Sci. 141 (2016) 169-176.

DOI: 10.21273/jashs.141.2.169

Google Scholar

[4] H. Wu, and Z. Li, Recent advances in nano-enabled agriculture for improving plant performance, Crop J. 10 (2022) 1-12.

Google Scholar

[5] K. Benke, and B. Tomkins, Future food-production systems: vertical farming and controlled-environment agriculture, Sustain.: Sci. Pract. Policy 13 (2017) 13-26.

DOI: 10.1080/15487733.2017.1394054

Google Scholar

[6] Y. Chang, H. Cui, Y. Wang, C. Li, J. Wang, M. Jin, Y. Luo, Y. Li, and Z. Wang, Silicon Spraying Enhances Wheat Stem Resistance to Lodging under Light Stress, Agronomy 13 (2023) 1-12.

DOI: 10.3390/agronomy13102565

Google Scholar

[7] N. Engler, and M. Krarti, Review of energy efficiency in controlled environment agriculture, Renew. Sust. Energ. 141 (2021) 110786-110786.

DOI: 10.1016/j.rser.2021.110786

Google Scholar

[8] S. Thomaier, K. Specht, D. Henckel, A. Dierich, R. Siebert, U.B. Freisinger, and M. Sawicka, Farming in and on urban buildings: Present practice and specific novelties of Zero-Acreage Farming (ZFarming), Renew. Agr. Food Syst. 30 (2015) 43-54.

DOI: 10.1017/s1742170514000143

Google Scholar

[9] D.C.J. Neo, M.M.X. Ong, Y.Y. Lee, E.J. Teo, Q. Ong, H. Tanoto, J. Xu, K.S. Ong, and V. Suresh, Shaping and Tuning Lighting Conditions in Controlled Environment Agriculture: A Review, ACS Agric. Sci. Technol. 2 (2022) 3-16.

DOI: 10.1021/acsagscitech.1c00241

Google Scholar

[10] K. Sartison, and M. Artmann, Edible cities – An innovative nature-based solution for urban sustainability transformation? An explorative study of urban food production in German cities, Urban For. Urban Green. 49 (2020) 1-15.

DOI: 10.1016/j.ufug.2020.126604

Google Scholar

[11] M.W. van Iersel, Optimizing LED Lighting in Controlled Environment Agriculture, Springer Singapore, Singapore, 2017, pp.59-80.

DOI: 10.1007/978-981-10-5807-3_4

Google Scholar

[12] H.A. Ahmed, T. Yu-Xin, and Y. Qi-Chang, Optimal control of environmental conditions affecting lettuce plant growth in a controlled environment with artificial lighting: A review, S. Afr. J. Bot. 130 (2020) 75-89.

DOI: 10.1016/j.sajb.2019.12.018

Google Scholar

[13] S. Eberhard, G. Finazzi, and F.-A. Wollman, The Dynamics of Photosynthesis, Annu. Rev. Genet. 42 (2008) 463-515.

DOI: 10.1146/annurev.genet.42.110807.091452

Google Scholar

[14] J.R. Evans, Improving Photosynthesis, Plant Physiol. 162 (2013) 1780-1793.

Google Scholar

[15] J. Lynch, P. Marschner, and Z. Rengel, Effect of Internal and External Factors on Root Growth and Development, Elsevier, 2012, pp.331-346.

DOI: 10.1016/b978-0-12-384905-2.00013-3

Google Scholar

[16] E. Kaiser, A. Morales, J. Harbinson, J. Kromdijk, E. Heuvelink, and L.F.M. Marcelis, Dynamic photosynthesis in different environmental conditions, J. Exp. Bot. 66 (2015) 2415-2426.

DOI: 10.1093/jxb/eru406

Google Scholar

[17] H.W. Choi, From the Photosynthesis to Hormone Biosynthesis in Plants, Plant Pathol. J. 40 (2024) 99-105.

Google Scholar

[18] T.D. Sharkey, The end game(s) of photosynthetic carbon metabolism, Plant Physiol. 195 (2024) 67-78.

Google Scholar

[19] I. Arora, H. Chawla, A. Chandra, S. Sagadevan, and S. Garg, Advances in the strategies for enhancing the photocatalytic activity of TiO2: Conversion from UV-light active to visible-light active photocatalyst, Inorg. Chem. Commun. 143 (2022) 1-35.

DOI: 10.1016/j.inoche.2022.109700

Google Scholar

[20] E. Austin, A.N. Geisler, J. Nguyen, I. Kohli, I. Hamzavi, H.W. Lim, and J. Jagdeo, Visible light. Part I: Properties and cutaneous effects of visible light, J. Am. Acad. Dermatol. 84 (2021) 1219-1231.

DOI: 10.1016/j.jaad.2021.02.048

Google Scholar

[21] S. Eichhorn Bilodeau, B.S. Wu, A.S. Rufyikiri, S. MacPherson, and M. Lefsrud, An Update on Plant Photobiology and Implications for Cannabis Production, Front. Plant Sci. 10 (2019) 296-310.

DOI: 10.3389/fpls.2019.00296

Google Scholar

[22] G. Govindjee, On the evolution of the concept of two light reactions and two photosystems for oxygenic photosynthesis: A personal perspective, Photosynthetica 61 (2023) 37-47.

DOI: 10.32615/ps.2023.006

Google Scholar

[23] Pazuki A., A.F.P. M., G. E., and G. S., Plant Responses to Extended Photosynthetically Active Radiation (EPAR), APAR 7 (2017) 313-318.

Google Scholar

[24] M. Veena, P.P. Sameena, N.G. Sarath, L. Noble, K.P.R. Aswathi, M.S. Amritha, R. Johnson, J.M. Joel, K.S. Anjitha, H.J.M. Hou, and J.T. Puthur, Revelations on photosystem II, thermoluminescence, and artificial photosynthesis: a retrospective of Govindjee from fundamentals to applications, Physiol. Mol. Biol. Plants 29 (2023) 1225-1238.

DOI: 10.1007/s12298-023-01373-x

Google Scholar

[25] R.S.d. Campos, E. Costa, D.F. Cavalcante, R.A. Freitas, and F.F.d.S. Binotti, Ornamental cherry tomatoes in different protected environments and reflector materials in cultivation Bench, Rev. Caatinga 36 (2023) 9-20.

DOI: 10.1590/1983-21252023v36n102rc

Google Scholar

[26] E. Costa, R.S.R. Reche, A.G.d. Silva, F.F.d.S. Binotti, M.B. Martins, and T. Zoz, Ornamental Pepper on Reflective Bench under Protected Environments, Eng. Agric. 41 (2021) 271-278.

DOI: 10.1590/1809-4430-eng.agric.v41n3p271-278/2021

Google Scholar

[27] H.-D. Kim, Y.-J. Choi, E.-Y. Bae, B.-I. Je, and J.-S. Kang, The Effects of Artificial Light Sources on Lettuce Seedling Vigor and Growth, J. Environ. Sci. 33 (2024) 305-322.

DOI: 10.5322/jesi.2024.33.5.305

Google Scholar

[28] K. Das, and A. Roychoudhury, Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants, Front. Environ. Sci. 2 (2014) 1-13.

DOI: 10.3389/fenvs.2014.00053

Google Scholar

[29] B. Demmig-Adams, C.M. Cohu, O. Muller, and W.W. Adams, Modulation of photosynthetic energy conversion efficiency in nature: from seconds to seasons, Photosynth. Res. 113 (2012) 75-88.

DOI: 10.1007/s11120-012-9761-6

Google Scholar

[30] K.-J. Dietz, Efficient high light acclimation involves rapid processes at multiple mechanistic levels, J. Exp. Bot. 66 (2015) 2401-2414.

DOI: 10.1093/jxb/eru505

Google Scholar

[31] J.-D. Rochaix, Regulation and Dynamics of the Light-Harvesting System, Annu. Rev. Plant Biol. 65 (2014) 287-309.

DOI: 10.1146/annurev-arplant-050213-040226

Google Scholar

[32] N.B. Claypool, and J.H. Lieth, Physiological responses of pepper seedlings to various ratios of blue, green, and red light using LED lamps, Sci. Hortic.-Amsterdam 268 (2020) 1-10.

DOI: 10.1016/j.scienta.2020.109371

Google Scholar

[33] M. Adibian, Y. Hamidoghli, M. Ghasemnezhad, and S. Aliniaeifard, Effects of combined Red and Blue light spectra as supplemental light on yield and fruit quality of sweet pepper, JHPR 6 (2023) 317-330.

Google Scholar

[34] M.J. Usigbe, S. Asem-Hiablie, D.D. Uyeh, O. Iyiola, T. Park, and R. Mallipeddi, Enhancing resilience in agricultural production systems with AI-based technologies, Environ. Dev. Sustainability 26 (2023) 21955-21983.

DOI: 10.1007/s10668-023-03588-0

Google Scholar

[35] F.M. Haque, and S.M. Grayson, The synthesis, properties and potential applications of cyclic polymers, Nat. Chem. 12 (2020) 433-444.

DOI: 10.1038/s41557-020-0440-5

Google Scholar

[36] S.L. Kristufek, K.T. Wacker, Y.-Y.T. Tsao, L. Su, and K.L. Wooley, Monomer design strategies to create natural product-based polymer materials, Nat. Prod. Rep. 34 (2017) 433-459.

DOI: 10.1039/c6np00112b

Google Scholar

[37] J.K. Szymański, Y.M. Abul-Haija, and L. Cronin, Exploring Strategies To Bias Sequence in Natural and Synthetic Oligomers and Polymers, Acc. Chem. Res. 51 (2018) 649-658.

DOI: 10.1021/acs.accounts.7b00495

Google Scholar

[38] L.H. Sperling, History of Interpenetrating Polymer Networks Starting with Bakelite-Based Compositions, 100+ Years of Plastics. Leo Baekeland and Beyond, 2011, pp.69-82.

DOI: 10.1021/bk-2011-1080.ch005

Google Scholar

[39] S. Ramakrishnan, Condensation polymerization, Resonance 22 (2017) 355-368.

Google Scholar

[40] E. Saldívar‐Guerra, and E. Vivaldo‐Lima, Introduction to Polymers and Polymer Types, Wiley, 2013, pp.1-14.

DOI: 10.1002/9781118480793.ch1

Google Scholar

[41] G. Shao, A. Li, Y. Liu, B. Yuan, and W. Zhang, Branched Polymers: Synthesis and Application, Macromolecules 57 (2024) 830-846.

DOI: 10.1021/acs.macromol.3c01631

Google Scholar

[42] C. Maraveas, Environmental Sustainability of Plastic in Agriculture, Agriculture 10 (2020) 310-310.

DOI: 10.3390/agriculture10080310

Google Scholar

[43] I. Sa'adu, and A. Farsang, Plastic contamination in agricultural soils: a review, Environ. Sci. Eur. 35 (2023) 1-13.

Google Scholar

[44] I. Sa'adu, and A. Farsang, Greenhouse farming as a source of macroplastic and microplastics contamination in agricultural soils: a case study from Southeast-Hungary, Agrokem. Talajt. 71 (2022) 43-57.

DOI: 10.1556/0088.2022.00120

Google Scholar

[45] H. Zhang, X. Yang, K. Wang, J. Cui, C.J. Ritsema, C. Yan, X. Liu, and V. Geissen, Macro- and micro-plastic accumulation in soils under different intensive farming systems: A case study in Quzhou county, the North China Plain, Environ. Pollut. 364 (2025) 1-10.

DOI: 10.1016/j.envpol.2024.125312

Google Scholar

[46] P. Riga, and L. Benedicto, Effects of light-diffusing plastic film on lettuce production and quality attributes, Span. J. Agric. Res. 15 (2017) 1-11.

DOI: 10.5424/sjar/2017151-10315

Google Scholar

[47] L. Xu, L. Yu, X. Jiang, Y. Zhao, and L. Xia, Effect of Polyolefin Film and Light Transition Film on the Growth of Lettuce, J. Agric. Sci. 10 (2018) 1-5.

DOI: 10.5539/jas.v10n5p379

Google Scholar

[48] Z. Steinmetz, C. Wollmann, M. Schaefer, C. Buchmann, J. David, J. Tröger, K. Muñoz, O. Frör, and G.E. Schaumann, Plastic mulching in agriculture. Trading short-term agronomic benefits for long-term soil degradation?, Sci. Total Environ. 550 (2016) 690-705.

DOI: 10.1016/j.scitotenv.2016.01.153

Google Scholar

[49] K.H.D. Tang, Microplastics in agricultural soils in China: Sources, impacts and solutions, Environ Pollut 322 (2023) 1-10.

Google Scholar

[50] A.L. Andrady, P.W. Barnes, J.F. Bornman, T. Gouin, S. Madronich, C.C. White, R.G. Zepp, and M.A.K. Jansen, Oxidation and fragmentation of plastics in a changing environment; from UV-radiation to biological degradation, Sci. Total Environ. 851 (2022) 1-9.

DOI: 10.1016/j.scitotenv.2022.158022

Google Scholar

[51] P. Rizzarelli, M. Rapisarda, L. Ascione, F.D. Innocenti, and F.P. La Mantia, Influence of photo-oxidation on the performance and soil degradation of oxo- and biodegradable polymer-based items for agricultural applications, Polym. Degrad. Stab. 188 (2021) 1-19.

DOI: 10.1016/j.polymdegradstab.2021.109578

Google Scholar

[52] G.A. El-Hiti, D.S. Ahmed, E. Yousif, O.S.A. Al-Khazrajy, M. Abdallh, and S.A. Alanazi, Modifications of Polymers through the Addition of Ultraviolet Absorbers to Reduce the Aging Effect of Accelerated and Natural Irradiation, Polymers (Basel) 14 (2021) 1-16.

DOI: 10.3390/polym14010020

Google Scholar

[53] P. Dang, D. Liu, G. Li, A.A. Al Kheraif, and J. Lin, Recent Advances in Bismuth Ion‐Doped Phosphor Materials: Structure Design, Tunable Photoluminescence Properties, and Application in White LEDs, Adv. Opt. Mater. 8 (2020) 1-12.

DOI: 10.1002/adom.201901993

Google Scholar

[54] E. Glais, F. Massuyeau, and R. Gautier, Tuning the Oxidation States of Dopants: A Strategy for the Modulation of Material Photoluminescence Properties, Chem. Eur. J. 27 (2021) 1-17.

DOI: 10.1002/chem.202003074

Google Scholar

[55] E.I. Madirov, V.A. Konyushkin, A.N. Nakladov, P.P. Fedorov, T. Bergfeldt, D. Busko, I.A. Howard, B.S. Richards, S.V. Kuznetsov, and A. Turshatov, An up-conversion luminophore with high quantum yield and brightness based on BaF2:Yb3+,Er3+ single crystals, J. Mater. Chem. C 9 (2021) 3493-3503.

DOI: 10.1039/d1tc00104c

Google Scholar

[56] C. Würth, S. Fischer, B. Grauel, A.P. Alivisatos, and U. Resch-Genger, Quantum Yields, Surface Quenching, and Passivation Efficiency for Ultrasmall Core/Shell Upconverting Nanoparticles, J. Am. Chem. Soc. 140 (2018) 4922-4928.

DOI: 10.1021/jacs.8b01458

Google Scholar

[57] D.V. Yanykin, D.E. Burmistrov, A.V. Simakin, J.A. Ermakova, and S.V. Gudkov, Effect of Up-Converting Luminescent Nanoparticles with Increased Quantum Yield Incorporated into the Fluoropolymer Matrix on Solanum lycopersicum Growth, Agronomy 12 (2022) 108-108.

DOI: 10.3390/agronomy12010108

Google Scholar

[58] S.K. Gupta, M.A. Penilla Garcia, J.P. Zuniga, M. Abdou, and Y. Mao, Visible and ultraviolet upconversion and near infrared downconversion luminescence from lanthanide doped La2Zr2O7 nanoparticles, J. Lumin. 214 (2019) 1-21.

DOI: 10.1016/j.jlumin.2019.116591

Google Scholar

[59] T. Matsubara, and T. Yamashita, Remote Optogenetics Using Up/Down-Conversion Phosphors, Front. Mol. Biosci. 8 (2021) 1-10.

DOI: 10.3389/fmolb.2021.771717

Google Scholar

[60] M. Sheoran, P. Sehrawat, H. Dalal, N. Kumari, and R.K. Malik, Realization of orange-red emanation from novel oxide-based BaSrY4O8:Sm3+ nanocrystals for optoelectronic applications, J. Mater. Sci.: Mater. Electron. 32 (2021) 23601-23613.

DOI: 10.1007/s10854-021-06848-9

Google Scholar

[61] Y. Zhu, Z. Pang, J. Wang, M. Ge, S. Sun, Z. Hu, J. Zhai, J. Gao, and F. Jiang, Effect of light conversion agent on luminous properties of a new down-converting material SrAl2O4:Eu2+,Dy3+/light conversion agent, J. Rare Earths 34 (2016) 483-488.

DOI: 10.1016/s1002-0721(16)60053-4

Google Scholar

[62] Y. Wang, Y. Yu, W. Liu, L. Ren, and G. Ge, Exploration of Highly Efficient Blue–Violet Light Conversion Agents for an Agricultural Film Based on Structure Optimization of Triphenylacrylonitrile, J. Agric. Food Chem. 66 (2018) 13295-13302.

DOI: 10.1021/acs.jafc.8b05453

Google Scholar

[63] K.-W. Kim, G.-H. Kim, S.-H. Kwon, H.-I. Yoon, J.-E. Son, and J.-H. Choi, Synthesis and photophysical properties of blue-emitting fluorescence dyes derived from naphthalimide derivatives containing a diacetylene linkage group, Dyes Pigm. 158 (2018) 353-361.

DOI: 10.1016/j.dyepig.2018.05.065

Google Scholar

[64] Q. Qiao, Z.-Q. Shen, X.-S. Wu, X.-Z. Wang, W.-B. Pei, S.-X. Liu, and X.-M. Ren, Glowing kaolinite intercalated with N-Methyl imidazole and Eu3+/Tb3+ salts and potential application in UV-to-red light conversion, Appl. Clay Sci. 186 (2020) 1-9.

DOI: 10.1016/j.clay.2020.105473

Google Scholar

[65] W. Wu, Z. Zhang, R. Dong, G. Xie, J. Zhou, K. Wu, H. Zhang, Q. Cai, and B. Lei, Characterization and properties of a Sr2Si5N8:Eu2+-based light-conversion agricultural film, J. Rare Earths 38 (2020) 1-7.

DOI: 10.1016/j.jre.2020.01.020

Google Scholar

[66] D. Wang, H. Wang, B. Qian, H. Zou, K. Zheng, X. Zhou, Y. Song, and Y. Sheng, Preparation of hydrophobic calcium carbonate phosphors and its application in fluorescent films, J. Lumin. 219 (2020) 1-8.

DOI: 10.1016/j.jlumin.2019.116844

Google Scholar

[67] Y. Zhou, C. Li, and Y. Wang, Crystal‐Field Engineering Control of an Ultraviolet–Visible‐Responsive Near‐Infrared‐Emitting Phosphor and Its Applications in Plant Growth, Night Vision, and NIR Spectroscopy Detection, Adv. Opt. Mater. 10 (2022) 1-12.

DOI: 10.1002/adom.202102246

Google Scholar

[68] M.O. Paskhin, D.V. Yanykin, and S.V. Gudkov, Current Approaches to Light Conversion for Controlled Environment Agricultural Applications: A Review, Horticulturae 8 (2022) 1-20.

DOI: 10.3390/horticulturae8100885

Google Scholar

[69] A. Mohammadpour-Haratbar, Y. Zare, M.T. Munir, K.Y. Rhee, and S.-J. Park, A review of ternary polymer nanocomposites containing clay and calcium carbonate and their biomedical applications, Nanotechnol. Rev. 13 (2024) 1-18.

DOI: 10.1515/ntrev-2023-0186

Google Scholar

[70] C.I. Idumah, M. Zurina, J. Ogbu, J.U. Ndem, and E.C. Igba, A review on innovations in polymeric nanocomposite packaging materials and electrical sensors for food and agriculture, Compos. Interfaces 27 (2020) 1-72.

DOI: 10.1080/09276440.2019.1600972

Google Scholar

[71] S. Yuan, F. Shen, C.K. Chua, and K. Zhou, Polymeric composites for powder-based additive manufacturing: Materials and applications, Prog. Polym. Sci. 91 (2019) 141-168.

DOI: 10.1016/j.progpolymsci.2018.11.001

Google Scholar

[72] X. Peng, B. Wang, X. Wang, B. Ni, and Z. Zuo, Effects of Different Colored Light-quality Selective Plastic Films on Growth, Photosynthetic Abilities, and Fruit Qualities of Strawberry, Hortic. Sci. Technol. 38 (2020) 462-473.

DOI: 10.7235/hort.20200044

Google Scholar

[73] Y. Choi, Y. Choi, O.H. Kwon, and B.S. Kim, Carbon Dots: Bottom‐Up Syntheses, Properties, and Light‐Harvesting Applications, Chem. Asian J. 13 (2018) 1-15.

DOI: 10.1002/asia.201701736

Google Scholar

[74] B. Wang, J. Li, Z. Tang, B. Yang, and S. Lu, Near-infrared emissive carbon dots with 33.96% emission in aqueous solution for cellular sensing and light-emitting diodes, Sci. Bull. 64 (2019) 1-19.

DOI: 10.1016/j.scib.2019.07.021

Google Scholar

[75] Y. Li, X. Xu, B. Lei, J. Zhuang, X. Zhang, C. Hu, J. Cui, and Y. Liu, Magnesium-nitrogen co-doped carbon dots enhance plant growth through multifunctional regulation in photosynthesis, Chem. Eng. J. 422 (2021) 1-10.

DOI: 10.1016/j.cej.2021.130114

Google Scholar

[76] X. Xu, X. Mao, J. Zhuang, B. Lei, Y. Li, W. Li, X. Zhang, C. Hu, Y. Fang, and Y. Liu, PVA-Coated Fluorescent Carbon Dot Nanocapsules as an Optical Amplifier for Enhanced Photosynthesis of Lettuce, ACS Sustain. Chem. Eng. 8 (2020) 3938-3949.

DOI: 10.1021/acssuschemeng.9b07706

Google Scholar

[77] S. Chandra, S. Pradhan, S. Mitra, P. Patra, A. Bhattacharya, P. Pramanik, and A. Goswami, High throughput electron transfer from carbon dots to chloroplast: a rationale of enhanced photosynthesis, Nanoscale 6 (2014) 3647-3655.

DOI: 10.1039/c3nr06079a

Google Scholar

[78] W. Li, S. Wu, H. Zhang, X. Zhang, J. Zhuang, C. Hu, Y. Liu, B. Lei, L. Ma, and X. Wang, Enhanced Biological Photosynthetic Efficiency Using Light-Harvesting Engineering with Dual-Emissive Carbon Dots, Adv. Funct. Mater. 28 (2018) 1-11.

DOI: 10.1002/adfm.201804004

Google Scholar

[79] J. He, Y. He, J. Zhuang, H. Zhang, B. Lei, and Y. Liu, Luminescence properties of Eu3+/CDs/PVA composite applied in light conversion film, Opt. Mater. 62 (2016) 1-7.

DOI: 10.1016/j.optmat.2016.10.036

Google Scholar

[80] B. Kumar Barman, T. Nagao, and K.K. Nanda, Dual roles of a transparent polymer film containing dispersed N-doped carbon dots: A high-efficiency blue light converter and UV screen, Appl. Surf. Sci. 510 (2020) 1-14.

DOI: 10.1016/j.apsusc.2020.145405

Google Scholar

[81] Y. Jiang, C. Yan, H. Zhang, M. Wu, S. Zheng, Y. Zhang, and L. Xu, Biodegradable Polylactide/Rare Earth Complexes in Light Conversion Agricultural Films, Coatings 11 (2021) 1-4.

DOI: 10.3390/coatings11020139

Google Scholar

[82] C.H. Parrish, 2nd, D. Hebert, A. Jackson, K. Ramasamy, H. McDaniel, G.A. Giacomelli, and M.R. Bergren, Optimizing spectral quality with quantum dots to enhance crop yield in controlled environments, Commun. Biol. 4 (2021) 124-138.

DOI: 10.1038/s42003-020-01646-1

Google Scholar

[83] W. Zhang, J. He, X. Yin, L. Wang, R. Chen, Y. Wang, and X. Pang, One-pot double in-situ fabrication of transparent semi-aromatic polyamide nanocomposites with upconversion nanoparticles, Compos. Commun. 20 (2020) 1-5.

DOI: 10.1016/j.coco.2020.100361

Google Scholar

[84] B. De, M. Kumar, B.B. Mandal, and N. Karak, An in situ prepared photo-luminescent transparent biocompatible hyperbranched epoxy/carbon dot nanocomposite, RSC Adv. 5 (2015) 74692-74704.

DOI: 10.1039/c5ra12131k

Google Scholar

[85] S. Shi, H. Lv, Y. Ge, Y. Wang, S. Xu, and C. Geng, One-pot synthesis of CsPbBr3 nanocrystals in methyl methacrylate: a kinetic study, in situ polymerization, and backlighting applications, J. Mater. Chem. C 11 (2023) 5846-5856.

DOI: 10.1039/d3tc00515a

Google Scholar

[86] J. Jang, D.-E. Yoon, S.-M. Kang, Y.H. Kim, I. Lee, H. Lee, Y.H. Kim, D.C. Lee, and B.-S. Bae, Exceptionally stable quantum dot/siloxane hybrid encapsulation material for white light-emitting diodes with a wide color gamut, Nanoscale 11 (2019) 14887-14895.

DOI: 10.1039/c9nr04517a

Google Scholar

[87] X. Guo, C.F. Wang, L.H. Mao, J. Zhang, Z.Y. Yu, and S. Chen, Encodable multiple-fluorescence CdTe@carbon nanoparticles from nanocrystal/colloidal crystal guest-host ensembles, Nanotechnology 24 (2013) 1-9.

DOI: 10.1088/0957-4484/24/13/135602

Google Scholar

[88] M. Lin, H.Y. Zou, T. Yang, Z.X. Liu, H. Liu, and C.Z. Huang, An inner filter effect based sensor of tetracycline hydrochloride as developed by loading photoluminescent carbon nanodots in the electrospun nanofibers, Nanoscale 8 (2016) 2999-3007.

DOI: 10.1039/c5nr08177g

Google Scholar

[89] Z. Tian, D. Li, E.V. Ushakova, V.G. Maslov, D. Zhou, P. Jing, D. Shen, S. Qu, and A.L. Rogach, Multilevel Data Encryption Using Thermal-Treatment Controlled Room Temperature Phosphorescence of Carbon Dot/Polyvinylalcohol Composites, Adv. Sci. (Weinh.) 5 (2018) 1-7.

DOI: 10.1002/advs.201800795

Google Scholar

[90] Z. Wang, F. Yuan, X. Li, Y. Li, H. Zhong, L. Fan, and S. Yang, 53% Efficient Red Emissive Carbon Quantum Dots for High Color Rendering and Stable Warm White-Light-Emitting Diodes, Adv. Mater. 29 (2017) 1-7.

DOI: 10.1002/adma.201702910

Google Scholar

[91] Y. Liu, M. Zhang, Y. Wu, R. Zhang, Y. Cao, X. Xu, X. Chen, L. Cai, and Q. Xu, Multicolor tunable highly luminescent carbon dots for remote force measurement and white light emitting diodes, Chem. Commun. 55 (2019) 12164-12167.

DOI: 10.1039/c9cc05581a

Google Scholar

[92] Q. Wu, X. Wang, S.A. Rasaki, T. Thomas, C. Wang, C. Zhang, and M. Yang, Yellow-emitting carbon-dots-impregnated carboxy methyl cellulose/poly-vinyl-alcohol and chitosan: Stable, freestanding, enhanced-quenching Cu2+-ions sensor, J. Mater. Chem. C 6 (2018) 4508-4515.

DOI: 10.1039/c8tc00660a

Google Scholar

[93] Z. Zhu, R. Cheng, L. Ling, Q. Li, and S. Chen, Rapid and Large‐Scale Production of Multi‐Fluorescence Carbon Dots by a Magnetic Hyperthermia Method, Angew. Chem. Int. Ed. 59 (2020) 3099-3105.

DOI: 10.1002/anie.201914331

Google Scholar

[94] E. Mutlugun, P.L. Hernandez-Martinez, C. Eroglu, Y. Coskun, T. Erdem, V.K. Sharma, E. Unal, S.K. Panda, S.G. Hickey, N. Gaponik, A. Eychmüller, and H.V. Demir, Large-Area (over 50 cm × 50 cm) Freestanding Films of Colloidal InP/ZnS Quantum Dots, Nano Lett. 12 (2012) 1-44.

DOI: 10.1021/nl301198k

Google Scholar

[95] G.H. Chen, C.T. Lin, P.H. Chen, T.W. Jang, and H.S. Chen, General Strategies for Preparing Hybrid Polymer/Quantum Dot Nanocomposites for Color Conversion, Nanomaterials (Basel) 13 (2023) 1-14.

DOI: 10.3390/nano13233072

Google Scholar

[96] M. Albdiry, Effect of melt blending processing on mechanical properties of polymer nanocomposites: a review, Polym. Bull. 81 (2024) 5793-5821.

DOI: 10.1007/s00289-023-05012-z

Google Scholar

[97] S.B. Mishra, A.K. Mishra, N. Revaprasadu, K.T. Hillie, W.J.v. Steyn, E. Coetsee, and H.C. Swart, Strontium aluminate/polymer composites: Morphology, luminescent properties, and durability, J. Appl. Polym. Sci. 112 (2009) 3347-3354.

DOI: 10.1002/app.29933

Google Scholar

[98] F. Ahangaran, and A.H. Navarchian, Recent advances in chemical surface modification of metal oxide nanoparticles with silane coupling agents: A review, Adv. Colloid Interface Sci. 286 (2020) 1-46.

DOI: 10.1016/j.cis.2020.102298

Google Scholar

[99] A.A. Ansari, A.K. Parchur, and G. Chen, Surface modified lanthanide upconversion nanoparticles for drug delivery, cellular uptake mechanism, and current challenges in NIR-driven therapies, Coord. Chem. Rev. 457 (2022) 1-38.

DOI: 10.1016/j.ccr.2022.214423

Google Scholar

[100] T. Aziz, A. Ullah, H. Fan, M.I. Jamil, F.U. Khan, R. Ullah, M. Iqbal, A. Ali, and B. Ullah, Recent Progress in Silane Coupling Agent with Its Emerging Applications, J. Polym. Environ. 29 (2021) 1-17.

DOI: 10.1007/s10924-021-02142-1

Google Scholar

[101] C. Cazan, A. Enesca, and L. Andronic, Synergic Effect of TiO2 Filler on the Mechanical Properties of Polymer Nanocomposites, Polymers (Basel) 13 (2021) 1-24.

DOI: 10.3390/polym13122017

Google Scholar

[102] G. Chakraborty, R. Padmashree, and A. Prasad, Recent advancement of surface modification techniques of 2-D nanomaterials, Mater. Sci. Eng.: B. 297 (2023) 1-22.

Google Scholar

[103] X.Y. Du, C.F. Wang, G. Wu, and S. Chen, The Rapid and Large-Scale Production of Carbon Quantum Dots and their Integration with Polymers, Angew. Chem., Int. Ed. 60 (2021) 8585-8595.

DOI: 10.1002/anie.202004109

Google Scholar

[104] Z. Feng, K.H. Adolfsson, Y. Xu, H. Fang, M. Hakkarainen, and M. Wu, Carbon dot/polymer nanocomposites: From green synthesis to energy, environmental and biomedical applications, Sustain. Mater. Technol. 29 (2021) e00304-e00316.

DOI: 10.1016/j.susmat.2021.e00304

Google Scholar

[105] V.L. John, Y. Nair, and T.P. Vinod, Doping and Surface Modification of Carbon Quantum Dots for Enhanced Functionalities and Related Applications, Part. Part. Syst. Charact. 38 (2021) 1-28.

DOI: 10.1002/ppsc.202100170

Google Scholar

[106] T. Han, Y. Yuan, X. Liang, Y. Zhang, C. Xiong, and L. Dong, Colloidal stable quantum dots modified by dual functional group polymers for inkjet printing, J. Mater. Chem. C 5 (2017) 4629-4635.

DOI: 10.1039/c7tc00452d

Google Scholar

[107] H. Wang, Z. Shao, M. Bacher, F. Liebner, and T. Rosenau, Fluorescent cellulose aerogels containing covalently immobilized (ZnS)x(CuInS2)1-x/ZnS (core/shell) quantum dots, Cellulose 20 (2013) 3007-3024.

DOI: 10.1007/s10570-013-0035-z

Google Scholar

[108] M. Zhou, W. Liu, C. Yang, X. Zhao, Z. Yang, X. Lu, and X. Jiang, Preparation and application of multinuclear rare earth ion doped organic complex light conversion agents, Fuhe Cailiao Xuebao/Acta Mater. Compos. Sin. 40 (2023) 2131-2139.

Google Scholar

[109] A.V. Simakin, V.V. Ivanyuk, A.S. Dorokhov, and S.V. Gudkov, Photoconversion Fluoropolymer Films for the Cultivation of Agricultural Plants Under Conditions of Insufficient Insolation, Appl. Sci. 10 (2020) 1-10.

DOI: 10.3390/app10228025

Google Scholar

[110] S.D. Al-Qahtani, and G.M. Al-Senani, Immobilization of rare-earth doped aluminate nanoparticles encapsulated with silica into polylactic acid-based color-tunable smart plastic window, Int. J. Biol. Macromol. 264 (2024) 130766.

DOI: 10.1016/j.ijbiomac.2024.130766

Google Scholar

[111] S. Alzahrani, K. Alkhamis, R. Felaly, F. Alkhatib, R. Pashameah, R. Shah, and N.M. El-Metwaly, Preparation of transparent photoluminescence plastic concrete integrated with lanthanide aluminate, Ceram. Int. 49 (2023) 12702-12709.

DOI: 10.1016/j.ceramint.2022.12.135

Google Scholar

[112] A.H. Ritonga, N. Jamarun, S. Arief, H. Aziz, D.A. Tanjung, and B. Isfa, Improvement of Mechanical, Thermal, and Morphological Properties of Organo-Precipitated Calcium Carbonate Filled LLDPE/Cyclic Natural Rubber Composites, Indones. J Chem. 22 (2022) 233-241.

DOI: 10.22146/ijc.68888

Google Scholar

[113] A.H. Ritonga, N. Jamarun, S. Arief, H. Aziz, D.A. Tanjung, B. Isfa, V. Sisca, and H. Faisal, Organic modification of precipitated calcium carbonate nanoparticles as filler in LLDPE/CNR blends with the presence of coupling agents: impact strength, thermal, and morphology, J. Mater. Res. Technol. 17 (2022) 2326-2332.

DOI: 10.1016/j.jmrt.2022.01.125

Google Scholar

[114] A. Salabat, B.S. Mirhoseini, and F. Mirhoseini, Ionic liquid based surfactant-free microemulsion as a new protocol for preparation of visible light active poly(methyl methacrylate)/TiO2 nanocomposite, Sci. Rep. 14 (2024) 15676-15690.

DOI: 10.1038/s41598-024-66872-7

Google Scholar

[115] L. Shahkar, A. Malek Khachatourian, and A. Nemati, Fabrication and characterization of PMMA denture base nanocomposite reinforced with hydroxyapatite and multi-walled carbon nanotubes, Diamond Relat. Mater. 147 (2024) 1-12.

DOI: 10.1016/j.diamond.2024.111377

Google Scholar

[116] C. Gao, H. Xu, J. Huang, B. Sun, F. Zhang, Z. Savage, C. Duggan, T. Yan, C.-h. Wu, Y. Wang, V.G.A.A. Vleeshouwers, S. Kamoun, T.O. Bozkurt, and S. Dong, Pathogen manipulation of chloroplast function triggers a light-dependent immune recognition, PNAS 117 (2020) 9613-9620.

DOI: 10.1073/pnas.2002759117

Google Scholar

[117] Z. Iqbal, M.S. Iqbal, A. Hashem, E.F. Abd Allah, and M.I. Ansari, Plant Defense Responses to Biotic Stress and Its Interplay With Fluctuating Dark/Light Conditions, Front. Plant Sci. 12 (2021) 1-22.

DOI: 10.3389/fpls.2021.631810

Google Scholar

[118] Y. Saijo, and E.P.i. Loo, Plant immunity in signal integration between biotic and abiotic stress responses, New Phytol. 225 (2020) 87-104.

DOI: 10.1111/nph.15989

Google Scholar

[119] J. Wang, X. Qiao, B. Li, B. Liu, J. Zhang, Z. Yan, P. Hao, X. Wang, Y. Liu, L. Shen, and Z. Wang, The research progress of rare earth agricultural light conversion film, Heliyon 10 (2024) e36967-e36980.

DOI: 10.1016/j.heliyon.2024.e36967

Google Scholar

[120] H.I. Yoon, J.H. Kang, W.H. Kang, and J.E. Son, Subtle changes in solar radiation under a green-to-red conversion film affect the photosynthetic performance and chlorophyll fluorescence of sweet pepper, Photosynthetica 58 (2020) 1107-1115.

DOI: 10.32615/ps.2020.057

Google Scholar

[121] Y. Gao, G. Li, B. Cai, Z. Zhang, N. Li, Y. Liu, and Q. Li, Effects of rare-earth light conversion film on the growth and fruit quality of sweet pepper in a solar greenhouse, Front. Plant Sci. 13 (2022) 1-11.

DOI: 10.3389/fpls.2022.989271

Google Scholar

[122] G. Amare, and B. Desta, Coloured plastic mulches: impact on soil properties and crop productivity, Chem. Biol. Technol. Agric. 8 (2021) 1-9.

DOI: 10.1186/s40538-020-00201-8

Google Scholar

[123] K. Salama, and M. Geyer, Plastic Mulch Films in Agriculture: Their Use, Environmental Problems, Recycling and Alternatives, Environments 10 (2023) 1-25.

DOI: 10.3390/environments10100179

Google Scholar

[124] Y. Zhao, X. Mao, S. Li, X. Huang, J. Che, and C. Ma, A Review of Plastic Film Mulching on Water, Heat, Nitrogen Balance, and Crop Growth in Farmland in China, Agronomy 13 (2023) 1-18.

DOI: 10.3390/agronomy13102515

Google Scholar

[125] Y. Qi, Y. Wang, Y. Yu, Z. Liu, Y. Zhang, Y. Qi, and C. Zhou, Exploring highly efficient light conversion agents for agricultural film based on aggregation induced emission effects, J. Mater. Chem. C 4 (2016) 11291-11297.

DOI: 10.1039/c6tc04215e

Google Scholar

[126] S. Hemming, E.A. Van Os, J. Hemming, and J.A. Dieleman, The effect of new developed fluorescent greenhouse films on the growth of Fragaria x ananassa 'Elsanta', European journal of horticultural science 71 (2006) 145-154.

Google Scholar

[127] R.N. Khramov, V.D. Kreslavski, E.A. Svidchenko, N.M. Surin, and A.A. Kosobryukhov, Influence of photoluminophore-modified agro textile spunbond on growth and photosynthesis of cabbage and lettuce plants, Opt. Express 27 (2019) 31967-31977.

DOI: 10.1364/oe.27.031967

Google Scholar

[128] Y. Gao, G. Li, B. Cai, Z. Zhang, N. Li, Y. Liu, and Q. Li, Effects of rare-earth light conversion film on the growth and fruit quality of sweet pepper in a solar greenhouse, Front. Plant Sci. 13 (2022) 989271.

DOI: 10.3389/fpls.2022.989271

Google Scholar

[129] S.V. Gudkov, A.V. Simakin, N.F. Bunkin, G.A. Shafeev, M.E. Astashev, A.P. Glinushkin, M.A. Grinberg, and V.A. Vodeneev, Development and application of photoconversion fluoropolymer films for greenhouses located at high or polar latitudes, J. Photochem. Photobiol. B 213 (2020) 1-18.

DOI: 10.1016/j.jphotobiol.2020.112056

Google Scholar

[130] H. Ben Amara, S. Bouadila, H. Fatnassi, M. Arici, and A. Allah Guizani, Climate assessment of greenhouse equipped with south-oriented PV roofs: An experimental and computational fluid dynamics study, Sustain. Energy Technol. Assessments 45 (2021) 1-12.

DOI: 10.1016/j.seta.2021.101100

Google Scholar

[131] C. Campiotti, F. Dondi, A. Genovese, G. Alonzo, V. Catanese, L. Incrocci, and C. Bibbiani, Photovoltaic as Sustainable energy for Greenhouse and closed plant production system, Acta Hortic. (2008) 373-378.

DOI: 10.17660/actahortic.2008.797.53

Google Scholar

[132] R. Ziessel, S. Diring, P. Kadjane, L. Charbonnière, P. Retailleau, and C. Philouze, Highly Efficient Blue Photoexcitation of Europium in a Bimetallic Pt–Eu Complex, Chem. Asian J. 2 (2007) 1-8.

DOI: 10.1002/asia.200700143

Google Scholar

[133] A.T. Nguyen, W.-H. Lin, Y.-H. Lu, Y.-D. Chiou, and Y.-J. Hsu, First demonstration of rainbow photocatalysts using ternary Cd1-xZnxSe nanorods of varying compositions, Appl. Catal. A: Gen. 476 (2014) 140-147.

DOI: 10.1016/j.apcata.2014.02.023

Google Scholar

[134] Y.-C. Pu, W.-T. Chen, M.-J. Fang, Y.-L. Chen, K.-A. Tsai, W.-H. Lin, and Y.-J. Hsu, Au–Cd 1−x Zn x S core–alloyed shell nanocrystals: boosting the interfacial charge dynamics by adjusting the shell composition, J. Mater. Chem. A 6 (2018) 17503-17513.

DOI: 10.1039/c8ta05539d

Google Scholar

[135] S. Sharifi, S. Behzadi, S. Laurent, M. Laird Forrest, P. Stroeve, and M. Mahmoudi, Toxicity of nanomaterials, Chem. Soc. Rev. 41 (2012) 2323-2343.

DOI: 10.1039/c1cs15188f

Google Scholar

[136] C.D. Spicer, C. Jumeaux, B. Gupta, and M.M. Stevens, Peptide and protein nanoparticle conjugates: versatile platforms for biomedical applications, Chem. Soc. Rev. 47 (2018) 3574-3620.

DOI: 10.1039/c7cs00877e

Google Scholar

[137] W. Tan, W. Du, A.C. Barrios, R. Armendariz, N. Zuverza-Mena, Z. Ji, C.H. Chang, J.I. Zink, J.A. Hernandez-Viezcas, J.R. Peralta-Videa, and J.L. Gardea-Torresdey, Surface coating changes the physiological and biochemical impacts of nano-TiO2 in basil (Ocimum basilicum) plants, Environ. Pollut. 222 (2017) 64-72.

DOI: 10.1016/j.envpol.2017.01.002

Google Scholar

[138] E. Jez, E. Pellegrini, M.S. Lemut, M. De Nobili, and M. Contin, High doses of polypropylene and polyvinyl chloride microplastics affect the microbial community and nutrient status of vineyard soils, Front. Environ. Sci. Eng. 19 (2025) 1-17.

DOI: 10.1007/s11783-025-1926-6

Google Scholar

[139] S. Kore, and S. Dharaskar, Polymer nanocomposite films and coatings in nuclear industry, Elsevier, 2024, pp.663-690.

DOI: 10.1016/b978-0-443-19139-8.00015-2

Google Scholar

[140] M. Muhammed Shameem, S.M. Sasikanth, R. Annamalai, and R. Ganapathi Raman, A brief review on polymer nanocomposites and its applications, Mater. Today: Proc. 45 (2021) 1-4.

DOI: 10.1016/j.matpr.2020.11.254

Google Scholar

[141] M. Wypij, J. Trzcinska-Wencel, P. Golinska, G.D. Avila-Quezada, A.P. Ingle, and M. Rai, The strategic applications of natural polymer nanocomposites in food packaging and agriculture: Chances, challenges, and consumers' perception, Front. Chem. 10 (2022) 1-18.

DOI: 10.3389/fchem.2022.1106230

Google Scholar

[142] P.M.Z. Hasan, S. Saini, A.A. Melaibari, N.S. Leel, Aakansha, R. Darwesh, A.M. Quraishi, J. Singh, A.E. Kuznetsov, S.Z. Hashmi, S. Dalela, and P.A. Alvi, Tunable optical and structural characteristics with improved electrical properties of (PVA-GO-CuO) eco-friendly-polymer nanocomposites and their DFT study, Diamond Relat. Mater. 140 (2023) 1-11.

DOI: 10.1016/j.diamond.2023.110425

Google Scholar

[143] C. Mukherjee, D. Varghese, J.S. Krishna, T. Boominathan, R. Rakeshkumar, S. Dineshkumar, C.V.S. Brahmananda Rao, and A. Sivaramakrishna, Recent advances in biodegradable polymers – Properties, applications and future prospects, Eur. Polym. J. 192 (2023) 1-12.

DOI: 10.1016/j.eurpolymj.2023.112068

Google Scholar

[144] M. Gouda, H.M. Abd El-Lateef, M.F. Abou Taleb, and M.M. Khalaf, Polylactic acid film embedded with phosphor nanoparticles: Photochromic and afterglow biodegradable window and concrete, J. Mol. Struct. 1300 (2024) 1-10.

DOI: 10.1016/j.molstruc.2023.137249

Google Scholar

[145] D. Zhang, Y. Zhang, Z. Wang, Y. Zheng, X. Zheng, L. Gao, C. Wang, C. Yang, H. Tang, and Y. Li, Biodegradable film enabling visible light excitation of Hexanuclear Europium(Ⅲ) complex for various applications, J. Lumin. 229 (2021) 1-10.

DOI: 10.1016/j.jlumin.2020.117706

Google Scholar

[146] S. Singh, K. Dev, S. Bhardwaj, D. Ramakanth, K.R. Singh, K.M. Poluri, K. Ghosh, and P.K. Maji, Biodegradable cellulose nanocrystal composites doped with carbon dots for packaging and anticounterfeiting applications, Nanoscale 17 (2025) 904-918.

DOI: 10.1039/d4nr03768e

Google Scholar

[147] A. Boccolini, J. Marques-Hueso, D. Chen, Y. Wang, and B.S. Richards, Physical performance limitations of luminescent down-conversion layers for photovoltaic applications, Sol. Energy Mater. Sol. Cells 122 (2014) 8-14.

DOI: 10.1016/j.solmat.2013.11.005

Google Scholar