Steel-PLA Composite 3D Printing: Tensile Strength and Geometric Precision

Article Preview

Abstract:

Most of FDM 3D technique use filaments made of plastic as the feeder or raw material. Therefore, its application limited to prototyping purpose. Recently, some filaments made of metal and plastic available in the market, which makes it possible to print functional components. However, there is a very limited number of published papers on mechanical properties and their accuracy. This research aims to find the optimal parameters of tensile strength and dimensional accuracy on 3D printing specimens made of steel-PLA. Some of the combined parameters are infill pattern, raster angle, print speed and bed temperature. This study used a delta-type 3D printer to print out specimens with dimensions according to ASTM D638 Type I. The results of this study are a combination that has optimal tensile strength values infill pattern honeycomb, raster angle 90°, print speed 80 mm/s and bed temperature 45°C. As for the combination with optimal dimensional accuracy, the parameters for infill pattern triangle, raster angle 90°, print speed 80 mm/s and bed temperature 60° are obtained.

You might also be interested in these eBooks

Info:

Periodical:

Engineering Headway (Volume 24)

Pages:

57-67

Citation:

Online since:

July 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] L. E. P. Real, 'Plastic Materials and Additives', in Recycled Materials for Construction Applications, Cham: Springer International Publishing, 2023, p.19–33.

DOI: 10.1007/978-3-031-14872-9_2

Google Scholar

[2] A. Razavykia, E. Brusa, C. Delprete, and R. Yavari, 'An Overview of Additive Manufacturing Technologies—A Review to Technical Synthesis in Numerical Study of Selective Laser Melting', Materials, vol. 13, no. 17, p.3895, Sep. 2020.

DOI: 10.3390/ma13173895

Google Scholar

[3] N. Qaud, 'Additive manufacturing  technologies at Sulzer'. Accessed: Oct. 16, 2024. [Online]. Available: https://www.researchgate.net/publication/326177846_Additive_manufacturing_technologies_at_Sulzer

Google Scholar

[4] F. Madaraka Mwema and E. Titilayo Akinlabi, 'Basics of Fused Deposition Modelling (FDM)', in Fused Deposition Modeling, Manufacturing and Surface Engineering, vol. 1, 2020, p.1–15.

DOI: 10.1007/978-3-030-48259-6_1

Google Scholar

[5] D. Srinivasan et al., '3D Printing Manufacturing Techniques, Materials, and Applications: An Overview', Advances in Materials Science and Engineering, vol. 2021, p.1–10, Dec. 2021.

DOI: 10.1155/2021/5756563

Google Scholar

[6] H. Gunaydin, Kadir & S. Türkmen, 'Common FDM 3D Printing Defects', International Congress on 3D Printing (Additive Manufacturing) Technologies and Digital Industry, no. April, p.1–8, 2018.

Google Scholar

[7] A. Of et al., 'Analysis Of The Effect Of Infill Pattern , Raster Angle , Print Speed And Bed Temperature On 3d Printing On Mechanical Properties With Steel-Pla Filament', vol. 0, no. 2021, p.1–4, 2022.

Google Scholar

[8] W. Liu, J. Zhou, Y. Ma, J. Wang, and J. Xu, 'Fabrication of PLA Filaments and its Printable Performance', IOP Conf Ser Mater Sci Eng, vol. 275, no. 1, 2018.

DOI: 10.1088/1757-899X/275/1/012033

Google Scholar

[9] ASTM International, 'ASTM D638-22  Standard Test Method for Tensile Properties of Plastics', https://www.astm.org/d0638-22.html.

Google Scholar

[10] K. Krishnaiah and P. Shahabudeen, Applied Design of Experiments and Taguchi Method. New Delhi: PHI Learning Private Limited, 2012.

Google Scholar

[11] M. Darsin, N. A. Mahardika, G. Jatisukamto, M. E. Ramadhan, B. A. Fachri, and M. S. Hussin, 'Effect of 3D Printing Parameters on Dimensional Accuracy Using eSteel Filaments', Journal Of 3D Printing And Additive Manufacturing, vol. 1, no. 1, Sep. 2022.

DOI: 10.53996/2833-5430.jpam.1000102

Google Scholar

[12] V. D. Sagias, K. I. Giannakopoulos, and C. Stergiou, 'Mechanical properties of 3D printed polymer specimens', Procedia Structural Integrity, vol. 10, p.85–90, 2018.

DOI: 10.1016/j.prostr.2018.09.013

Google Scholar

[13] N. Kumar Maurya, V. Rastogi, and P. Singh, 'Investigation of dimensional accuracy and international tolerance grades of 3D printed polycarbonate parts', Mater Today Proc, vol. 25, p.537–543, 2020.

DOI: 10.1016/j.matpr.2019.06.007

Google Scholar

[14] M. Kafara, J. Kemnitzer, H.-H. Westermann, and R. Steinhilper, 'Influence of Binder Quantity on Dimensional Accuracy and Resilience in 3D-Printing', Procedia Manuf, vol. 21, p.638–646, 2018.

DOI: 10.1016/j.promfg.2018.02.166

Google Scholar

[15] A. M. M. Nazmul Ahsan and B. Khoda, 'Characterizing Novel Honeycomb Infill Pattern for Additive Manufacturing', J Manuf Sci Eng, vol. 143, no. 2, Feb. 2021.

DOI: 10.1115/1.4048044

Google Scholar

[16] G. Poojitha, P. Talari, S. Banoth, and A. Kumar, 'Effects of combined infill angle with honeycomb pattern on the mechanical properties of HIPS and polypropylene in FDM process', Mater Today Proc, Oct. 2023.

DOI: 10.1016/j.matpr.2023.09.219

Google Scholar

[17] C. Hamzaçebi, 'Taguchi Method as a Robust Design Tool', in Quality Control - Intelligent Manufacturing, Robust Design and Charts, IntechOpen, 2021.

DOI: 10.5772/intechopen.94908

Google Scholar

[18] R. H. Abdul Haq et al., 'Mechanical Properties of PCL/PLA Composite Sample Produced from 3D Printer and Injection Molding', International Journal of Integrated Engineering, vol. 11, no. 5, Aug. 2019.

DOI: 10.30880/ijie.2019.11.05.014

Google Scholar

[19] S.-Y. Yoo, S.-K. Kim, S.-J. Heo, J.-Y. Koak, and J.-G. Kim, 'Dimensional Accuracy of Dental Models for Three-Unit Prostheses Fabricated by Various 3D Printing Technologies', Materials, vol. 14, no. 6, p.1550, Mar. 2021.

DOI: 10.3390/ma14061550

Google Scholar

[20] J. F. C. Khaw, B. S. Lim, and L. E. N. Lim, 'Optimal design of neural networks using the Taguchi method', Neurocomputing, vol. 7, no. 3, p.225–245, Apr. 1995.

DOI: 10.1016/0925-2312(94)00013-I

Google Scholar

[21] P. M. George, N. Pillai, and N. Shah, 'Optimization of shot peening parameters using Taguchi technique', J Mater Process Technol, vol. 153–154, p.925–930, Nov. 2004.

DOI: 10.1016/j.jmatprotec.2004.04.159

Google Scholar

[22] B. Aloyaydi, S. Sivasankaran, and A. Mustafa, 'Investigation of infill-patterns on mechanical response of 3D printed poly-lactic-acid', Polym Test, vol. 87, no. April, p.106557, 2020.

DOI: 10.1016/j.polymertesting.2020.106557

Google Scholar

[23] D. W. Adams and C. J. Turner, 'Effect of implicitly derived infill patterns on mechanical properties', Proceedings of the ASME Design Engineering Technical Conference, vol. 1, 2017.

DOI: 10.1115/DETC2017-67572

Google Scholar

[24] M. Galeja, A. Hejna, P. Kosmela, and A. Kulawik, 'Static and Dynamic Mechanical Properties of 3D Printed ABS as a Function of Raster Angle', Materials, vol. 13, no. 2, p.297, Jan. 2020.

DOI: 10.3390/ma13020297

Google Scholar

[25] M. Darsin, R. L. Amir, H. Sutjahjono, M. E. Ramadhan, and Y. Hermawan, 'The Effect of Nozzle Temperature , Layer Height , and Infill Pattern on Dimensional Accuracy and Flexural Strength of 3D Printed Cu-PLA Filaments', Gongcheng Kexue Yu Jishu/Advanced Engineering Science, vol. 54, no. 03, p.1437

Google Scholar

[26] M. Spoerk, J. Gonzalez-Gutierrez, J. Sapkota, S. Schuschnigg, and C. Holzer, 'Effect of the printing bed temperature on the adhesion of parts produced by fused filament fabrication', Plastics, Rubber and Composites, vol. 47, no. 1, p.17–24, 2018.

DOI: 10.1080/14658011.2017.1399531

Google Scholar