[1]
Bora, C., Sarkar, C., Mohan, K. J., & Dolui, S. (2015). Polythiophene/graphene composite as a highly efficient platinum-free counter electrode in dye-sensitized solar cells.
DOI: 10.1016/j.electacta.2014.12.164
Google Scholar
[2]
Prolongo, S. G., Moriche, R., Jiménez-Suárez, a., Sánchez, M., & Ureña, a., Sánchez,M.,& Ureña,a.(2014). Advantages and disadvantages of the addition of graphene nanoplatelets to epoxy resins. European 'Polymer' Journal 61,206–214.
DOI: 10.1016/j.eurpolymj.2014.09.022
Google Scholar
[3]
Ghani, S., Sharif, R., Shahzadi, S., Zafar, N., Anwar, a. W., Ashraf, A., … Bashir, S. (2014). Simple and inexpensive electrodeposited silver/polyaniline composite counter electrodes for dye-sensitized solar cells. Journal of Materials Science, 50(3), 1469– 1477
DOI: 10.1007/s10853-014-8708-z
Google Scholar
[4]
Chang, Q., Ma, Z., Wang, J., Yan, Y., Shi, W., Chen, Q., Huang, L. (2015). Electrochimica Acta Graphene nanosheets @ ZnO nanorods as three-dimensional high ef fi cient counter electrodes for dye sensitized solar cells. Electrochimica Acta, 151, 459–466. http://doi.org/10.1016/j.electacta. 2014.11.074
DOI: 10.1016/j.electacta.2014.11.074
Google Scholar
[5]
Elif Peksu, Cigdem Yener, C. Gokhan Unlu, Mustafa Kulakci, Hakan Karaaga. (2025). Selective synthesis of ZnO nanorods on graphene for solar cell applications. Journal of Alloys and Compounds, Vol. 1010, 177488.
DOI: 10.1016/j.jallcom.2024.177488
Google Scholar
[6]
Lian, Z., Yan, Q., Zhang, L., Liu, X., Lian, Z., Wang, X., & Shen, G. (2014). Highly efficient field emission from large-scale and uniform monolayer graphene sheet supported on patterned ZnO nanorod arrays uniform monolayer graphene sheet supported on, (APRIL)
DOI: 10.1039/C4TC00219A
Google Scholar
[7]
Yang Ma, Stefanos Chaitoglou, Ghulam Farid, Roger Amade, Rogelio Ospina, A.L. Muñoz-Rosas, Enric Bertran-Serra. (2024) Supercapacitive performance of electrodes based on defective ZnO nanorods anchored on graphene nanowalls. Chemical Engineering Journal, Vol. 488, 151135
DOI: 10.1016/j.cej.2024.151135
Google Scholar
[8]
Mahmoud Mazarji, Niyaz Mohammad Mahmoodi, Gholamreza Nabi Bidhendi, Aohua Li, Mengtong Li, Anina James, Bahaaddin Mahmoodi, Junting Pan. (2025). Synthesis, characterization, and enhanced photocatalytic dye degradation: Optimizing graphene-based ZnO-CdSe nanocomposites via response surface methodology. Journal of Alloys and Compounds, Vol. 1010, 177999.
DOI: 10.1016/j.jallcom.2024.177999
Google Scholar
[9]
Han, J., Fan, F., Xu, C., Lin, S., Wei, M., Duan, X., & Wang, Z. L. (2010). ZnO nanotube-based dye-sensitized solar cell and its application in self-powered devices, 405203
DOI: 10.1088/0957-4484/21/40/405203
Google Scholar
[10]
Guerrero H Contreras, J., & Caballero H Briones, F. (2015). Graphene oxide powders with different oxidation degree, prepared by synthesis variations of the Hummers method. Materials Chemistry and Physics, 153, 209–220
DOI: 10.1016/j.matchemphys.2015.01.005
Google Scholar
[11]
Cai, R., Wu, J., Sun, L., Liu, Y., Fang, T., Zhu, S., … Wei, A. (2016). 3D graphene/ZnO composite with enhanced photocatalytic activity. Materials & Design, 90, 839–844
DOI: 10.1016/j.matdes.2015.11.020
Google Scholar
[12]
Zhang, Z., Ren, L., Han, W., Meng, L., & Wei, X. (2015). One-pot electrodeposition synthesis of ZnO / graphene composite and its use as binder-free electrode for supercapacitor. Ceramics International, 41(3), 4374–4380
DOI: 10.1016/j.ceramint.2014.11.127
Google Scholar
[13]
Saranya, K., Rameez, M., & Subramania, A. (2015). Developments in conducting polymer based counter electrodes for dye-sensitized solar cells – An overview. European Polymer Journal, 66, 207–227
DOI: 10.1016/j.eurpolymj.2015.01.049
Google Scholar
[14]
Lim, Y. S., Tan, Y. P., Lim, H. N., Huang, N. M., & Tan, W. T. (2013). Preparation and characterization of polypyrene/graphene nanocomposite films and their electrochemical performance. Journal of Polymer Research, 20(6)
DOI: 10.1007/s10965-013-0156-y
Google Scholar
[15]
Chen, L., He, H., Yu, H., Cao, Y., & Yang, D. (2014). Electrochimica Acta Fabrication and photovoltaic conversion enhancement of graphene / n-Si Schottky barrier solar cells by electrophoretic deposition. Electrochimica Acta, 130, 279–285
DOI: 10.1016/j.electacta.2014.03.020
Google Scholar
[16]
Lu, T., Zhang, Y., Li, H., Pan, L., Li, Y., & Sun, Z. (2010). Electrochemical behaviors of graphene-ZnO and graphene-SnO2 composite films for supercapacitors
DOI: 10.1016/j.electacta.2010.02.095
Google Scholar
[17]
Khurana, G., Sahoo, S., Barik, S. K., & Katiyar, R. S. (2013). Improved photovoltaic performance of dye sensitized solar cell using ZnOH graphene nano-composites. Journal of Alloys and Compounds, 578, 257–260
DOI: 10.1016/j.jallcom.2013.05.080
Google Scholar
[18]
Chen, J., Li, B., Zheng, J., Zhao, J., & Zhu, Z. (2012). Role of Carbon Nanotubes in Dye- Sensitized TiO2-Based Solar Cells. The Journal of Physical Chemistry C, 116(28), 14848–14856
DOI: 10.1021/jp304845t
Google Scholar