The Effect of Gold Nanoparticles (AuNPs) on the Sensitivity of Potentiometric Cooper Sensors

Article Preview

Abstract:

Copper (II) is an essential heavy metal for living things and is beneficial for the environment if levels are still below permitted limits. Copper (II) levels in the environment can be determined using potentiometric sensors. The sensitivity in measuring the copper (II) potentiometric sensor greatly determines the analysis results. To increase the sensitivity of the potentiometric copper (II) sensor, AuNPs compounds were added to the composition of the membrane material based on S-Methyl N-(Methylcarbamoyloxy) Thioacetimidate or methomyl. In this research, the optimum composition of the membrane for making copper (II) potentiometric sensors based on methomyl has been determined and the effect of AuNPs compounds on the sensitivity of copper (II) potentiometric sensors based on methomyl has been studied. Research variables include the composition of the membrane used and variations in the addition of AuNPs compounds to the optimum membrane composition. The research results show the optimum performance of the copper (II) potentiometric sensor on the membrane composition methomyl: PVC: DOP with a ratio of 17: 17: 66 (%w/w) which produces a Nernst Factor value of 28.09 mV/decade. The addition of AuNPs compounds to the potentiometric copper (II) sensor membrane showed optimum performance when adding 0.1 mL of AuNPs with a Nernst Factor value of 29.55 mV/decade with a detection limit of 0.6 ppm copper (II). The addition of AuNPs compounds to the optimum membrane composition can increase the Nernst Factor value which is close to the theoretical Nernst Factor value.

You might also be interested in these eBooks

Info:

Periodical:

Engineering Headway (Volume 24)

Pages:

69-74

Citation:

Online since:

July 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K. H. H. Aziz, F. S. Mustafa, K. M. Omer, S. Hama, R. Fayaq Hamarawf, and K. Othman Rahman, "Heavy metal pollution in the aquatic environment: efficient and low-cost removal approaches to eliminate their toxicity: a review," RSC Adv., vol. 13, no. 26, p.17595–17610, 2023.

DOI: 10.1039/D3RA00723E

Google Scholar

[2] M. El Badry Mohamed, E. Y. Frag, and M. H. El Brawy, Rapid potentiometric sensor for determination of Cu(II) ions in food samples, Microchem. J., vol. 164, p.106065, (2021).

DOI: 10.1016/j.microc.2021.106065

Google Scholar

[3] USEPA, Maximum contaminant level goals and national primary drinking water regulations for lead and copper; final rule, 40 CFR Parts 141 and 142. Fed Reg 56:110. 1991.

Google Scholar

[4] Pemerintah Indonesia, PP No. 22 Tahun 2021. Available: https://peraturan.bpk.go.id/Details/161852/pp-no-22-tahun-(2021)

Google Scholar

[5] A. A. Taylor et al., Critical Review of Exposure and Effects: Implications for Setting Regulatory Health Criteria for Ingested Copper, Environ. Manage., vol. 65, no. 1, p.131–159, (2020).

DOI: 10.1007/s00267-019-01234-y

Google Scholar

[6] G. Khayatian, M. Moradi, and S. Hassanpoor, MnO2/3MgO Nanocomposite for Preconcentration and Determination of Trace Copper and Lead in Food and Water by Flame Atomic Absorption Spectrometry, J. Anal. Chem., vol. 73, no. 5, p.470–478, (2018).

DOI: 10.1134/S1061934818050088

Google Scholar

[7] C. Morrison, H. Sun, Y. Yao, R. A. Loomis, and W. E. Buhro, Methods for the ICP-OES Analysis of Semiconductor Materials, Chem. Mater., vol. 32, no. 5, p.1760–1768, (2020).

DOI: 10.1021/acs.chemmater.0c00255

Google Scholar

[8] J. R. K. Silveira, L. C. Brudi, S. R. Waechter, P. A. Mello, A. B. Costa, and F. A. Duarte, Copper determination in beer by flame atomic absorption spectrometry after extraction and preconcentration by dispersive liquid-liquid microextraction, Microchem. J., vol. 184, p.108181, (2023).

DOI: 10.1016/j.microc.2022.108181

Google Scholar

[9] D. J. Butcher, Recent advances in graphite furnace atomic absorption spectrometry: a review of fundamentals and applications, Appl. Spectrosc. Rev., vol. 59, no. 2, p.247–275, (2024).

DOI: 10.1080/05704928.2023.2192268

Google Scholar

[10] B. P. Harp, P. F. Scholl, P. J. Gray, and P. Delmonte, Quantitation of copper chlorophylls in green table olives by ultra-high-performance liquid chromatography with inductively coupled plasma isotope dilution mass spectrometry, J. Chromatogr. A, vol. 1620, p.461008, (2020).

DOI: 10.1016/j.chroma.2020.461008

Google Scholar

[11] F. Zhou, C. Li, H. Zhu, and Y. Li, A novel method for simultaneous determination of zinc, nickel, cobalt, and copper-based on UV–vis spectrometry, Optik, vol. 182, p.58–64, Apr. (2019).

DOI: 10.1016/j.ijleo.2018.12.159

Google Scholar

[12] V. de O. Trinta et al., Total metal content and chemical speciation analysis of iron, copper, zinc, and iodine in human breast milk using high-performance liquid chromatography separation and inductively coupled plasma mass spectrometry detection, Food Chem., vol. 326, p.126978, (2020).

DOI: 10.1016/j.foodchem.2020.126978

Google Scholar

[13] N. Aslan, Z. Koçak, H. E. Kormalı Ertürün, and N. Şen, Analysis of Copper(II) Ions in Human Blood Using a New Solid-Contact PVC Membrane Potentiometric Sensor Based on a N,N'-Bis(salicylidene)-1,3-diaminopropane Schiff Base, Anal. Bioanal. Chem. Res., vol. 10, no. 2, p.193–204, (2023).

Google Scholar

[14] E. Zdrachek and E. Bakker, Potentiometric Sensing, Anal. Chem., vol. 91, no. 1, p.2–26, (2019).

DOI: 10.1021/acs.analchem.8b04681

Google Scholar

[15] O. Özbek, Ö. Isildak, and C. Berkel, The use of porphyrins in potentiometric sensors as ionophores, J. Incl. Phenom. Macrocycl. Chem., vol. 98, no. 1, p.1–9, (2020).

DOI: 10.1007/s10847-020-01004-y

Google Scholar

[16] S. Kaur, V. Kumar, M. Chawla, L. Cavallo, A. Poater, and N. Upadhyay, Pesticides Curbing Soil Fertility: Effect of Complexation of Free Metal Ions, Front. Chem., vol. 5, p.43, (2017).

DOI: 10.3389/fchem.2017.00043

Google Scholar

[17] V. K. Gupta, B. Sethi, N. Upadhyay, S. Kumar, R. Singh, and L. P. Singh, Iron (III) Selective Electrode Based on S-Methyl N-(Methylcarbamoyloxy) Thioacetimidate as a Sensing Material, Int. J. Electrochem. Sci., vol. 6, no.3, p.650–663,(2011).

DOI: 10.1016/S1452-3981(23)15023-1

Google Scholar

[18] J. Zhai, D. Yuan, and X. Xie, Ionophore-based ion-selective electrodes: signal transduction and amplification from potentiometry, Sens. Diagn., vol. 1, no. 2, p.213–221, (2022).

DOI: 10.1039/D1SD00055A

Google Scholar

[19] T. Awad Ali, A. A. Abd-Elaal, and G. G. Mohamed, Screen printed ion-selective electrodes based on self-assembled thiol surfactant-gold-nanoparticles for determination of Cu(II) in different water samples, Microchem. J., vol. 160, p.105693, (2021).

DOI: 10.1016/j.microc.2020.105693

Google Scholar

[20] Q. Zhang, C. Wang, L. Yu, J. You, G. Wei, and J. Zhang, Structural and Transport Properties of Hydrophilic and Hydrophobic Modified Ionomers in Proton Exchange Membrane Fuel Cells, 2024.

DOI: 10.3390/polym16050668

Google Scholar

[21] M. Jozanović, N. Sakač, M. Karnaš, and M. Medvidović-Kosanović, Potentiometric Sensors for the Determination of Anionic Surfactants – A Review, Crit. Rev. Anal. Chem., vol. 51, no. 2, p.115–137, (2021).

DOI: 10.1080/10408347.2019.1684236

Google Scholar

[22] I. Kaur, M. Sharma, S. Kaur, and A. Kaur, Ultra-sensitive electrochemical sensors based on self-assembled chelating dithiol on the gold electrode for trace level detection of copper(II) ions, Sens. Actuators B Chem., vol. 312, (2020).

DOI: 10.1016/j.snb.2020.127935

Google Scholar

[23] C. J. Murphy et al., Impact of branching on the supramolecular assembly of thioethers on Au(111), J. Chem. Phys., vol. 142, no. 10, p.101915, (2015).

DOI: 10.1063/1.4907270

Google Scholar