[1]
Zhou, Z., Li, B., Liu, X., Li, Z., Zhu, S., Liang, Y., Cui, Z., & Wu, S. (2021). Recent Progress in Photocatalytic Antibacterial. ACS Applied Bio Materials, 4(5), 3909–3936
DOI: 10.1021/acsabm.0c01335
Google Scholar
[2]
Ali, R., & Yashima, M. (2005). Space group and crystal structure of the Perovskite CaTiO3 from 296 to 1720 K. Journal of Solid State Chemistry, 178(9), 2867–2872
DOI: 10.1016/j.jssc.2005.06.027
Google Scholar
[3]
Zhang, L., Tan, P. Y., Chow, C. L., Lim, C. K., Tan, O. K., Tse, M. S., & Sze, C. C. (2014). Antibacterial activities of mechanochemically synthesized perovskite strontium titanate ferrite metal oxide. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 456, 169–175
DOI: 10.1016/j.colsurfa.2014.05.032
Google Scholar
[4]
Passi, M., & Pal, B. (2021). A review on CaTiO3 photocatalyst: Activity enhancement methods and photocatalytic applications. Powder Technology, 388, 274–304
DOI: 10.1016/j.powtec.2021.04.056
Google Scholar
[5]
Han, C., Liu, J., Yang, W., Wu, Q., Yang, H., & Xue, X. (2017). Photocatalytic activity of CaTiO3 synthesized by solid state, sol–gel and hydrothermal methods. Journal of Sol-Gel Science and Technology, 81(3), 806–813
DOI: 10.1007/s10971-016-4261-3
Google Scholar
[6]
Dong, W., Zhao, G., Bao, Q., & Gu, X. (2016). Effects of morphologies on the photocatalytic properties of CaTiO3 nano/microstructures. Journal of the Ceramic Society of Japan, 124(4), 475–479
DOI: 10.2109/jcersj2.15272
Google Scholar
[7]
Listiani, D., Sapar, A., & Aritonang, A. B. (2019). Sintesis TiO2-Kaolin Dan Uji Aktivitas Fotokatalisis Untuk Antibakteri Escherichia coli dan Staphylococcus aureus. Indonesian Journal of Pure and Applied Chemistry, 2(3), 130.
DOI: 10.26418/indonesian.v2i3.36895
Google Scholar
[8]
Jing Fu, YudongHou, Xuepeng Liu, MupengZheng, Mankang Zhu. (2020). Construction Strategy of Ferroelectrics by Molten Salt Method and Its Application in Energy Field. Journal of Materials Chemistry C
Google Scholar
[9]
Novianti, D. R., Haikal, F., Rouf, U. A., Hardian, A., & Prasetyo, A. (2022). Synthesis and Characterization of Fe-Doped CaTiO3 Polyhedra Prepared by Molten NaCl Salt. Science and Technology Indonesia, 7(1), 17–21
DOI: 10.26554/sti.2022.7.1.17-21
Google Scholar
[10]
Yoshida, H., Zhang, L., Sato, M., Morikawa, T., Kajino, T., Sekito, T., Matsumoto, S., & Hirata, H. (2015). Calcium titanate photocatalyst prepared by a flux method for reduction of carbon dioxide with water. Catalysis Today, 251, 132–139.
DOI: 10.1016/j.cattod.2014.10.039
Google Scholar
[11]
Rahmawati, R. (2014). Antibacterial activity test of ethanol extract from dragon scale leaves (Drymoglossum piloselloides (L.) Presl) and binahong (Anredera cordifolia (Ten.) Steenis) against Streptococcus mutans bacteria (Doctoral dissertation, Universitas Islam Negeri Maulana Malik Ibrahim).
DOI: 10.51213/jamp.v9i1.125
Google Scholar
[12]
Retnowati, P. A., & Kusnadi, J. (2014). Production of Probiotic Date Juice (Phoenix dactylifera) Using Lactobacillus casei and Lactobacillus plantarum Isolates [In Press April 2014]. Jurnal Pangan dan Agroindustri, 2(2), 70-81.
Google Scholar
[13]
Gupta, S. K., & Mao, Y. (2021). A review on molten salt synthesis of metal oxide nanomaterials: Status, opportunity, and challenge. Progress in Materials Science, 117, 100734.
DOI: 10.1016/j.pmatsci.2020.100734
Google Scholar
[14]
Yang, H., Han, C., dan Xue, X. 2014. Photocatalytic Activity of Fe-Doped CaTiO3 under UV–Visible Light. Journal of Environmental Sciences, 26(7): 1489-1495
DOI: 10.1016/j.jes.2014.05.015
Google Scholar
[15]
Yang, H., Liu, D., & Xue, X. (2012). Antibacterial analyse of perovskite. Journal of Shanghai Jiaotong University (Science), 17(3), 337–340
DOI: 10.1007/s12204-012-1282-0
Google Scholar
[16]
Regmi, C., Joshi, B., Ray, S. K., Gyawali, G., & Pandey, R. P. (2018). Understanding Mechanism of Photocatalytic Microbial Decontamination of Environmental Wastewater. Frontiers in Chemistry, 6, 33
DOI: 10.3389/fchem.2018.00033
Google Scholar
[17]
Gu, Y., Rabe, K., Bousquet, E., Gopalan, V., & Chen, L.-Q. (2012). Phenomenological thermodynamic potential for CaTiO3 single crystals. Physical Review B, 85(6), 064117.
Google Scholar
[18]
Ganguly, P., Byrne, C., Breen, A., & Pillai, S. C. (2018). Antimicrobial activity of photocatalysts: Fundamentals, mechanisms, kinetics and recent advances. Applied Catalysis B: Environmental, 225, 51–7
DOI: 10.1016/j.apcatb.2017.11.018
Google Scholar
[19]
Kumar, R., Anandan, S., Hembram, K., & Narasinga Rao, T. (2014). Efficient ZnO-Based Visible-Light-Driven Photocatalyst for Antibacterial Applications. ACS Applied Materials & Interfaces, 6(15)
DOI: 10.1021/am502915v
Google Scholar
[20]
Zhuang, J., Tian, Q., Lin, S., Yang, W., Chen, L., & Liu, P. (2014). Precursor morphologycontrolled formation of perovskites CaTiO3 and their photo-activity for As(III) removal. Applied Catalysis B: Environmental, 156–157, 108–115
DOI: 10.1016/j.apcatb.2014.02.015
Google Scholar