Antibacterial Test of the CaTiO3 Compound Obtained through Molten Salt Method

Article Preview

Abstract:

Microbial resistance has become a threat that causes thousands of deaths yearly; therefore, efforts are required to address this problem. One of the promising methods used to inhibit bacterial growth is photocatalyst technology. In this research, CaTiO3 compounds was synthesized using the molten salt method and tested for antibacterial activity in both UV-unexposed and UV-exposed conditions on Staphylococcus aureus bacteria. The diffractogram showed that the CaTiO3 compound was successfully synthesized without impurities that indicated by the characteristic peaks at 2θ (o) = 23.29; 33.18; 47.52; 59.33; 69.48; 79.17. The micrograph results showed that the CaTiO3 compound had a regular polyhedral shape and was agglomerated with particle sizes in the 0.2941 ± 0.0144 µm range. The UV-Vis DRS spectra showed that the CaTiO3 compound had a bandgap energy of 3.48 eV (315 nm). In the antibacterial activity test results under UV irradiation, the growth of Staphylococcus aureus decreased by 3.95, 0.91, and 1.45 CFU/mL.

You might also be interested in these eBooks

Info:

Periodical:

Engineering Headway (Volume 24)

Pages:

101-108

Citation:

Online since:

July 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Zhou, Z., Li, B., Liu, X., Li, Z., Zhu, S., Liang, Y., Cui, Z., & Wu, S. (2021). Recent Progress in Photocatalytic Antibacterial. ACS Applied Bio Materials, 4(5), 3909–3936

DOI: 10.1021/acsabm.0c01335

Google Scholar

[2] Ali, R., & Yashima, M. (2005). Space group and crystal structure of the Perovskite CaTiO3 from 296 to 1720 K. Journal of Solid State Chemistry, 178(9), 2867–2872

DOI: 10.1016/j.jssc.2005.06.027

Google Scholar

[3] Zhang, L., Tan, P. Y., Chow, C. L., Lim, C. K., Tan, O. K., Tse, M. S., & Sze, C. C. (2014). Antibacterial activities of mechanochemically synthesized perovskite strontium titanate ferrite metal oxide. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 456, 169–175

DOI: 10.1016/j.colsurfa.2014.05.032

Google Scholar

[4] Passi, M., & Pal, B. (2021). A review on CaTiO3 photocatalyst: Activity enhancement methods and photocatalytic applications. Powder Technology, 388, 274–304

DOI: 10.1016/j.powtec.2021.04.056

Google Scholar

[5] Han, C., Liu, J., Yang, W., Wu, Q., Yang, H., & Xue, X. (2017). Photocatalytic activity of CaTiO3 synthesized by solid state, sol–gel and hydrothermal methods. Journal of Sol-Gel Science and Technology, 81(3), 806–813

DOI: 10.1007/s10971-016-4261-3

Google Scholar

[6] Dong, W., Zhao, G., Bao, Q., & Gu, X. (2016). Effects of morphologies on the photocatalytic properties of CaTiO3 nano/microstructures. Journal of the Ceramic Society of Japan, 124(4), 475–479

DOI: 10.2109/jcersj2.15272

Google Scholar

[7] Listiani, D., Sapar, A., & Aritonang, A. B. (2019). Sintesis TiO2-Kaolin Dan Uji Aktivitas Fotokatalisis Untuk Antibakteri Escherichia coli dan Staphylococcus aureus. Indonesian Journal of Pure and Applied Chemistry, 2(3), 130.

DOI: 10.26418/indonesian.v2i3.36895

Google Scholar

[8] Jing Fu, YudongHou, Xuepeng Liu, MupengZheng, Mankang Zhu. (2020). Construction Strategy of Ferroelectrics by Molten Salt Method and Its Application in Energy Field. Journal of Materials Chemistry C

Google Scholar

[9] Novianti, D. R., Haikal, F., Rouf, U. A., Hardian, A., & Prasetyo, A. (2022). Synthesis and Characterization of Fe-Doped CaTiO3 Polyhedra Prepared by Molten NaCl Salt. Science and Technology Indonesia, 7(1), 17–21

DOI: 10.26554/sti.2022.7.1.17-21

Google Scholar

[10] Yoshida, H., Zhang, L., Sato, M., Morikawa, T., Kajino, T., Sekito, T., Matsumoto, S., & Hirata, H. (2015). Calcium titanate photocatalyst prepared by a flux method for reduction of carbon dioxide with water. Catalysis Today, 251, 132–139.

DOI: 10.1016/j.cattod.2014.10.039

Google Scholar

[11] Rahmawati, R. (2014). Antibacterial activity test of ethanol extract from dragon scale leaves (Drymoglossum piloselloides (L.) Presl) and binahong (Anredera cordifolia (Ten.) Steenis) against Streptococcus mutans bacteria (Doctoral dissertation, Universitas Islam Negeri Maulana Malik Ibrahim).

DOI: 10.51213/jamp.v9i1.125

Google Scholar

[12] Retnowati, P. A., & Kusnadi, J. (2014). Production of Probiotic Date Juice (Phoenix dactylifera) Using Lactobacillus casei and Lactobacillus plantarum Isolates [In Press April 2014]. Jurnal Pangan dan Agroindustri, 2(2), 70-81.

Google Scholar

[13] Gupta, S. K., & Mao, Y. (2021). A review on molten salt synthesis of metal oxide nanomaterials: Status, opportunity, and challenge. Progress in Materials Science, 117, 100734.

DOI: 10.1016/j.pmatsci.2020.100734

Google Scholar

[14] Yang, H., Han, C., dan Xue, X. 2014. Photocatalytic Activity of Fe-Doped CaTiO3 under UV–Visible Light. Journal of Environmental Sciences, 26(7): 1489-1495

DOI: 10.1016/j.jes.2014.05.015

Google Scholar

[15] Yang, H., Liu, D., & Xue, X. (2012). Antibacterial analyse of perovskite. Journal of Shanghai Jiaotong University (Science), 17(3), 337–340

DOI: 10.1007/s12204-012-1282-0

Google Scholar

[16] Regmi, C., Joshi, B., Ray, S. K., Gyawali, G., & Pandey, R. P. (2018). Understanding Mechanism of Photocatalytic Microbial Decontamination of Environmental Wastewater. Frontiers in Chemistry, 6, 33

DOI: 10.3389/fchem.2018.00033

Google Scholar

[17] Gu, Y., Rabe, K., Bousquet, E., Gopalan, V., & Chen, L.-Q. (2012). Phenomenological thermodynamic potential for CaTiO3 single crystals. Physical Review B, 85(6), 064117.

Google Scholar

[18] Ganguly, P., Byrne, C., Breen, A., & Pillai, S. C. (2018). Antimicrobial activity of photocatalysts: Fundamentals, mechanisms, kinetics and recent advances. Applied Catalysis B: Environmental, 225, 51–7

DOI: 10.1016/j.apcatb.2017.11.018

Google Scholar

[19] Kumar, R., Anandan, S., Hembram, K., & Narasinga Rao, T. (2014). Efficient ZnO-Based Visible-Light-Driven Photocatalyst for Antibacterial Applications. ACS Applied Materials & Interfaces, 6(15)

DOI: 10.1021/am502915v

Google Scholar

[20] Zhuang, J., Tian, Q., Lin, S., Yang, W., Chen, L., & Liu, P. (2014). Precursor morphologycontrolled formation of perovskites CaTiO3 and their photo-activity for As(III) removal. Applied Catalysis B: Environmental, 156–157, 108–115

DOI: 10.1016/j.apcatb.2014.02.015

Google Scholar