Effect of Incubation Time and Filtrate Usage on Enzymatic Deproteination of Shrimp Wastes

Article Preview

Abstract:

Frozen shrimp companies in Indonesia produce a large amount of shrimp waste. Shrimp waste can be processed into chitin and hydrolysate through the deproteinization process. In this study, deproteinization uses an enzymatic method with a pH of 2.5 ± 0.1 conditioned by using sulfuric acid. Shrimp waste was incubated for 3 or 5 d using acidic water and filtrate from the previous incubation. The Kjeldahl method determined the total nitrogen content of the residue and hydrolysate. The total nitrogen content of the hydrolysate was converted to obtain the protein content. The nitrogen content results in residue obtained at incubation times of 3 and 5 d using acidic water solution, which was 6.98% and 6.64%. Meanwhile, the total nitrogen content soaked in the previous filtrate for 6, 9, 10, and 15 d was 6.57, 6.36, 6.24, and 6.13%, respectively. The protein content obtained at incubation times of 3 and 5 d using acidic water solution was 6.78 and 8.4%. Meanwhile, the total protein levels soaked in the previous filtrate for 6, 9, 10, and 15 d were 9.33, 10.57, 11.12, and 12.49%, respectively. The incubation time decreases the total nitrogen content in the residue and the increase in protein content in the hydrolysate. Keywords: Shrimp Waste, Deproteinization Enzymatic, N total Chitin, Protein Hydrolisate

You might also be interested in these eBooks

Info:

Periodical:

Engineering Headway (Volume 24)

Pages:

131-138

Citation:

Online since:

July 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Dompeipen, E. J., Kaimudin, M., Dewa Balai Riset dan Standarisasi Industri Ambon, R. P., Cengkeh, J., & Merah Ambon, B. (2016). Isolation Of Chitin And Chitosan From Waste Of Skin Shrimp. Majalah Biam, 12(1): 32-38.

Google Scholar

[2] Sowmya, R., Ravikumar, T. M., Vivek, R., Rathinaraj, K., & Sachindra, N. M. (2014). Optimization of enzymatic hydrolysis of shrimp waste for recovery of antioxidant activity rich protein isolate. Journal of Food Science and Technology, 51(11), 3199–3207

DOI: 10.1007/s13197-012-0815-8

Google Scholar

[3] J. Ferrer a, (1996). Acid hydrolysis of shrimp-shell wastes and the production of single cell protein from the hydrolysate. Bioresource Technology, 57(1), 55– 60.

DOI: 10.1016/0960-8524(96)00057-0

Google Scholar

[4] Singh, S.M., R.B. Siddhnath, A. Aziz, N. Verma & B.B. Chriwatkar. 2018. Shrimp waste powder: Potential as protein supplement. Int. J. Pure Appl. Biosci. 6. 401-406

DOI: 10.18782/2320-7051.7141

Google Scholar

[5] Petrova, I., Tolstorebrov, I., & Eikevik, T. M. (2018). Production of fish protein hydrolysates step by step: technological aspects, equipment used, major energy costs and methods of their minimizing. In International Aquatic Research (Vol. 10, Issue 3, p.223–241). Springer Verlag

DOI: 10.1007/s40071-018-0207-4

Google Scholar

[6] Gao et al. 2024. Advances in extraction, utilization, and development of chitin/chitosan and its derivatives from shrimp shell waste. Comprehensive Reviews in Food Science and Food Safety Volume 23, Issue 5

DOI: 10.1111/1541-4337.70008

Google Scholar

[7] Kristinsson, H. G., & Rasco, B. A. (2000). Fish protein hydrolysates: Production, biochemical, and functional properties. Critical Reviews in Food Science and Nutrition, 40(1), 43–81

DOI: 10.1080/10408690091189266

Google Scholar

[8] Irazoqui, J.M., et al. 2024. Enzymes for production of whey protein hydrolysates and other value-added products. Applied Microbiology and Biotechnology 108: 354

DOI: 10.1007/s00253-024-13117-2

Google Scholar

[9] Gildberg A, Stenberg E (2001) A new process for advanced utilizationof shrimp waste. Process Biochem 36:809–812

DOI: 10.1016/s0032-9592(00)00278-8

Google Scholar

[10] Kristinsson HG, Rasco BA (2000) Biochemical and functional properties of Atlantic salmon (Salmo salar) muscle hydrolyzed with various alkaline proteases. J Agric Food Chem 48:657–666

DOI: 10.1021/jf990447v

Google Scholar

[11] Evangelho, J. A. D., et al. (2017). Black bean (Phaseolus vulgaris L.) protein hydrolysates: Physicochemical and functional properties. Food Chemistry 214: 460–467

DOI: 10.1016/j.foodchem.2016.07.046

Google Scholar

[12] Helen Helda Prastika., et al. (2019). Penggunaan Enzim Pepsin Untuk Produksi Hidrolisat Protein Kacang Gude (Cajanus cajan (L.) Millsp.) Yang Aktif Antioksidan. Cakra Kimia (Indonesian E-Journal of Applied Chemistry) , 7(2), 180–188

Google Scholar

[13] Sjaifullah, A., & Santoso, A. B. (2016). Autolytic Isolation of Chitin from White Shrimp (Penaues Vannamei) Waste. Procedia Chemistry, 18, 49–52

DOI: 10.1016/j.proche.2016.01.009

Google Scholar

[14] Juniarso, E. T. (2008). Pemanfaatan Ekstrak Kasar Protease Dari Isi Perut Ikan  Lemuru (Sardinella sp.) Untuk Deproteinasi Limbah Udang  Secara Enzimatik Dalam Proses Produksi Kitosan. Skripsi.

Google Scholar

[15] Rosaini, H., Rasyid, R., & Hagramida, V. (2015). Penetapan Kadar Protein Secara Kjeldahl Beberapa Makanan Olahan Kerang Remis (Corbiculla moltkiana Prime.) DARI DANAU SINGKARAK. In Jurnal Farmasi Higea (Vol. 7, Issue 2).

Google Scholar

[16] Bradstreet, R.B. 1954. Kjeldahl Method for Organic Nitrogen. Analytical Chemistry 26 (1): 185-187

DOI: 10.1021/ac60085a028

Google Scholar

[17] Wijayanti, T. (2022). Teknik dan Metode Analisis Biokimia. Media Nusa Creative.

Google Scholar

[18] Silman H., & Karlin, A. (1967). Effect Of Local Ph Changes Caused By Substrate Hydrolysis On The Activity Of Membrane-Bound Acetylcholinesterase. Proc Natl Acad U.S.A 58(4): 1664-1668

DOI: 10.1073/pnas.58.4.1664

Google Scholar

[19] Shahidi, F. and M. Naczk. (1995). Food Phenolics : Sources, Chemistry, Effects, and Applications. Technomic Publishing Company. USA

DOI: 10.1016/s0308-8146(96)80478-x

Google Scholar

[20] Puspitasari, G., Safrihatini, W., & Umam, K. (2019). Studi Kinetika Reaksi Dari Enzim α-Amilase Pada Proses Penghilangan Kanji Kain Kapas. Arena Tekstil, 34(1):1-6.

DOI: 10.31266/at.v34i1.5097

Google Scholar

[21] Jeyaprakashsabari, S., & Aanand, S. (2021). Shrimp Waste – A Valuable Protein Source for Aqua Feed. AgriCos e-Newsletter 2(7): 64-67

Google Scholar