[1]
C. Wang, L. Yin, L. Zhang, D. Xiang, and R. Gao, Metal Oxide Gas Sensor: Sensitivity and Influencing Factors, Sensors (Basel)., 10 (2010) 2088–2106.
DOI: 10.3390/s100302088
Google Scholar
[2]
G. Zamiri and A. S. M. A. Haseeb, Recent Trends and Developments in Graphene/Conducting Polymer Nanocomposites Chemiresistive Sensors, Materials (Basel)., 13 (2020) 3311.
DOI: 10.3390/ma13153311
Google Scholar
[3]
S. Widodo, Review: Semiconductor Metal Oxide Based Gas Sensor for Selective and Sensitive Detection Of Pollutant Gases, TECHNO-SOCIO Ekon., 12 (2019) 92-112
Google Scholar
[4]
B. Hua and S. Gaoquan, Gas Sensors Based on Conducting Polymers, Sensors, 7 (2007)267-307.
Google Scholar
[5]
G. Korotcenkov, Handbook of Gas Sensor Materials. Vol1 2013.
Google Scholar
[6]
J. Stejskal et al., Polypyrrole salts and bases: superior conductivity of nanotubes and their stability towards the loss of conductivity by deprotonation, RSC Adv., 6 (2016) 88382–88391.
DOI: 10.1039/c6ra19461c
Google Scholar
[7]
O. Folorunso, Y. Hamam, R. Sadiku, and S. Sinha Ray, Computational Study of Graphene–Polypyrrole Composite Electrical Conductivity, Nanomaterials, 11 (2021) 827.
DOI: 10.3390/nano11040827
Google Scholar
[8]
P. Bhargava, W. Liu, M. Pope, T. Tsui, and A. Yu, Substrate comparison for polypyrrole-graphene based high-performance flexible supercapacitors, Electrochim. Acta, 358 (2020) 136846.
DOI: 10.1016/j.electacta.2020.136846
Google Scholar
[9]
G. Imamura et al., Graphene Oxide as a Sensing Material for Gas Detection Based on Nanomechanical Sensors in the Static Mode, Chemosensors, 8, (2020) 82.
DOI: 10.3390/chemosensors8030082
Google Scholar
[10]
X. Tang et al., An ammonia sensor composed of polypyrrole synthesized on reduced graphene oxide by electropolymerization, Sensors Actuators B Chem., 30 (2020) 127423.
DOI: 10.1016/j.snb.2019.127423
Google Scholar
[11]
S. Prezioso et al., Graphene Oxide as a Practical Solution to High Sensitivity Gas Sensing. J. Phys. Chem. C, 1117 (2013) 0683–10690.
Google Scholar
[12]
V. Gargiulo et al., Graphene-like layers as promising chemiresistive sensing material for detection of alcohols at low concentration, J. Appl. Phys., 123 (2018) 24503.
Google Scholar
[13]
M. Faree et al., Carbon monoxide sensor based on polypyrrole–graphene oxide composite: a cost-effective approach, Appl. Phys. A, 127 (2021).
Google Scholar
[14]
P. Patil, G. Gaikwad, D. R. Patil, and J. Naik, Gas Sensitivity Study of Polypyrrole Decorated Graphene Oxide Thick Film, J. Inst. Eng. Ser. D, 97 (2016) 47–53.
DOI: 10.1007/s40033-015-0085-5
Google Scholar
[15]
L. Wang and R. Jiang, Investigation on the Ammonia Sensitivity Mechanism of Conducting Polymer Polypyrroles Using In-Situ FT-IR, Mater. Sci. Appl., 10 (2019) 497–508.
DOI: 10.4236/msa.2019.107036
Google Scholar
[16]
P. Najafi and A. Ghaemi, Chemiresistor gas sensors: Design, Challenges, and Strategies: A comprehensive review, Chem. Eng. J., 498 (2024) 154999.
DOI: 10.1016/j.cej.2024.154999
Google Scholar
[17]
R. Luo, H. Li, B. Du, S. Zhou, and Y. Chen, A Printed and Flexible NO2 Sensor Based on a Solid Polymer Electrolyte," Front. Chem., 7 (2019).
DOI: 10.3389/fchem.2019.00286
Google Scholar
[18]
A. Vijayan, M. Fuke, R. Hawaldar, M. Kulkarni, D. Amalnerkar, and R. C. Aiyer, Optical fibre based humidity sensor using Co-polyaniline clad, Sensors Actuators B Chem., 129 (2008)106–112.
DOI: 10.1016/j.snb.2007.07.113
Google Scholar
[19]
B. You and J.-Y. Lu, Sensitivity analysis of multilayer microporous polymer structures for terahertz volatile gas sensing, Opt. Express, 25 (2017) 5651.
DOI: 10.1364/oe.25.005651
Google Scholar
[20]
Zulfikar et al., Development array sensor for detecting Robusta coffee aroma, AIP Conf. Proc., 2818 (2023).
Google Scholar
[21]
T. Mulyono, A. Asnawati, and S. S. Wulandari, Effect of Polyaniline/Graphene Oxide Thickness as A Gas Sensor Material for Robusta Coffee Aroma Tests, JKPK (Jurnal Kim. dan Pendidik. Kim). 8 (203).
Google Scholar
[22]
F. Ahmed and S. Hassan, Optical and A.C. Electrical Properties for Polypyrrole and Polypyrrole/Graphene (ppy/gn) Nanocomposites,"Iraqi J. Phys., 19 (2021) 72–78.
DOI: 10.30723/ijp.v19i51.652
Google Scholar
[23]
J. Guerrero-Contreras and F. Caballero-Briones, Graphene oxide powders with different oxidation degree, prepared by synthesis variations of the Hummers method, Mater. Chem. Phys., 153 (2015) 1–12.
DOI: 10.1016/j.matchemphys.2015.01.005
Google Scholar
[24]
Y. M. Muflihah et al., Development of Polypyrrole/Graphene Oxide Gas Sensor for Detection of Coffee Aroma, EduChemia J. Kim. dan Pendidik., 8 (2023) 97–112.
DOI: 10.30870/educhemia.v8i1.18231
Google Scholar
[25]
T. Mulyono, A. Siswoyo, P. B. Lestari, Zulfikar, and Y. M. Mufliha, Development of A Resistive Sensor Array Based on Graphene and Conducting Polymer Composites for Coffee Aroma Classification, E3S Web Conf., 481 (2024).
DOI: 10.1051/e3sconf/202448106012
Google Scholar
[26]
S.F. Besharat, M. Manteghian, and M. Abdollahi, Study of Polypyrrole/Graphene Oxide Nanocomposite Structural and Morphological Changes Including Porosity, Polym. Sci. Ser. B, 60 (2018) 664–674.
DOI: 10.1134/s1560090418050032
Google Scholar
[27]
M. Kigozi et al., Synthesis and characterization of graphene oxide from locally mined graphite flakes and its supercapacitor applications, Results Mater., 7 (200) 100113.
DOI: 10.1016/j.rinma.2020.100113
Google Scholar
[28]
A. Kausaite-Minkstimiene, V. Mazeiko, A. Ramanaviciene, and A. Ramanavicius, Evaluation of chemical synthesis of polypyrrole particles, Colloids Surfaces A Physicochem. Eng. Asp., 483 (2025) 224–231.
DOI: 10.1016/j.colsurfa.2015.05.008
Google Scholar
[29]
L.-Q. Fan, G.-J. Liu, J.-H. Wu, L. Liu, J.-M. Lin, and Y.-L. Wei, Asymmetric supercapacitor based on graphene oxide/polypyrrole composite and activated carbon electrodes, Electrochim. Acta, 137 (2014) 26–33.
DOI: 10.1016/j.electacta.2014.05.137
Google Scholar
[30]
S. Konwer, A.K. Guha, and S.K. Dolui, Graphene oxide-filled conducting polyaniline composites as methanol-sensing materials, J. Mater. Sci., 48 (2013) 1729–1739.
DOI: 10.1007/s10853-012-6931-z
Google Scholar
[31]
P. Choudhury, U.S. Prasad Uday, T. K. Bandyopadhyay, R. N. Ray, and B. Bhunia, Performance improvement of microbial fuel cell (MFC) using suitable electrode and Bioengineered organisms: A review., Bioengineered, 8 2017) 471–487.
DOI: 10.1080/21655979.2016.1267883
Google Scholar
[32]
X. Chen, Z. Qu, Z. Liu, and G. Ren, Mechanism of Oxidization of Graphite to Graphene Oxide by the Hummers Method, ACS Omega, 7 (2022) 23503–23510.
DOI: 10.1021/acsomega.2c01963
Google Scholar
[33]
S.A. Akbar, Ammonia Gas Sensor Based on Polyaniline Conductive Polymer: A Review," QUIMICA: Jurnal Kimia Sains dan Terapan, 3 (2022) 1–8.
DOI: 10.33059/jq.v3i2.4678
Google Scholar
[34]
I.J. García-Rosado, J. Uribe-Calderón, and N. Alonso-Vante, Nitrogen-Doped Reduced Graphite Oxide as a Support for CoSe Electrocatalyst for Oxygen Reduction Reaction in Alkaline Media, J. Electrochem. Soc., 164 (017) F658.
DOI: 10.1149/2.1531706jes
Google Scholar
[35]
J. Zhong, S. Gao, G. Xue, and B. Wang, "Study on Enhancement Mechanism of Conductivity Induced by Graphene Oxide for Polypyrrole Nanocomposites," Macromolecules, 48 (2015) 1592–1597.
DOI: 10.1021/ma502449k
Google Scholar
[36]
R. E. Walpole, Introduction to statistics / Ronald E. Walpole, 1968. [Online]. Available:
Google Scholar
[37]
M. Mamat, S. Abdullah, S. Shahruddin, and N. H. Sebran, Development and Validation of Method for Determination of Chloride in Surfactant Sample Using Auto-Titrator, Science Journal of Analytical Chemistry, 8 (2020) 78.
DOI: 10.11648/j.sjac.20200802.17
Google Scholar