[1]
B. M. Twaij and M. N. Hasan, Bioactive Secondary Metabolites from Plant Sources: Types, Synthesis, and Their Therapeutic Uses, Int. J. Plant Biol. 13(1) (2022) 4–14
DOI: 10.3390/ijpb13010003
Google Scholar
[2]
M. Mitsiogianni, D. T. Trafalis, R. Franco, V. Zoumpourlis, A. Pappa, and M. I. Panayiotidis, Sulforaphane and iberin are potent epigenetic modulators of histone acetylation and methylation in malignant melanoma, Eur. J. Nutr. 60(1) (2021) 147–158
DOI: 10.1007/s00394-020-02227-y
Google Scholar
[3]
F. J. Barba, N. Nikmaram, S. Roohinejad, A. Khelfa, Z. Zhu, and M. Koubaa, Bioavailability of Glucosinolates and Their Breakdown Products: Impact of Processing, Front. Nutr. 3 (2016) 1–12
DOI: 10.3389/fnut.2016.00024
Google Scholar
[4]
K. Palani et al., Influence of fermentation on glucosinolates and glucobrassicin degradation products in sauerkraut, Food Chem. 190 (2016) 755–762
DOI: 10.1016/j.foodchem.2015.06.012
Google Scholar
[5]
J. Sun et al., The effect of processing and cooking on glucoraphanin and sulforaphane in brassica vegetables, Food Chem. 360 130007 (2021)
DOI: 10.1016/j.foodchem.2021.130007
Google Scholar
[6]
J. A. Bouranis et al., Article composition of the gut microbiome influences production of sulforaphane-nitrile and iberin-nitrile from glucosinolates in broccoli sprouts, Nutrients. 13(9) (2021)
DOI: 10.3390/nu13093013
Google Scholar
[7]
S. A. Marshall et al., The broccoli-derived antioxidant sulforaphane changes the growth of gastrointestinal microbiota, allowing for the production of anti-inflammatory metabolites, J. Funct. Foods. 107 105645 (2023).
DOI: 10.1016/j.jff.2023.105645
Google Scholar
[8]
M. Parasakthi and K. Sanjeev, Sulforaphane as a preventive agent in Oral Cancer- A Systematic Review, Oral Oncol. Reports. 10 100429 (2024)
DOI: 10.1016/j.oor.2024.100429
Google Scholar
[9]
M. A. Amer, T. R. Mohamed, R. A. Abdel Rahman, M. Ali, and A. Badr, Studies on exogenous elicitors promotion of sulforaphane content in broccoli sprouts and its effect on the MDA-MB-231 breast cancer cell line, Ann. Agric. Sci. 66(1) (2021) 46–52.
DOI: 10.1016/j.aoas.2021.02.001
Google Scholar
[10]
T. T. Gong et al., Isothiocyanate Iberin inhibits cell proliferation and induces cell apoptosis in the progression of ovarian cancer by mediating ROS accumulation and GPX1 expression, Biomed. Pharmacother., 142 111533 (2021)
DOI: 10.1016/j.biopha.2021.111533
Google Scholar
[11]
P. Pocasap, N. Weerapreeyakul, and K. Thumanu, Alyssin and iberin in cruciferous vegetables exert anticancer activity in HepG2 by increasing intracellular reactive oxygen species and tubulin depolymerization, Biomol. Ther. 27(6) (2019) 540–552
DOI: 10.4062/biomolther.2019.027
Google Scholar
[12]
Y. Hosokawa et al., "The Anti-Inflammatory Effects of Iberin on TNF- α -Stimulated," Biomedicines, 10 3155 (2022)
Google Scholar
[13]
A. Das, B. Bhattacharya, and S. Roy, Decrypting a path based approach for identifying the interplay between PI3K and GSK3 signaling cascade from the perspective of cancer, Genes Dis. 9(4) (2022) 868–888
DOI: 10.1016/j.gendis.2021.12.025
Google Scholar
[14]
B. Moser et al., The inflammatory kinase IKKα phosphorylates and stabilizes c-Myc and enhances its activity, Mol. Cancer, 20(1) (2021) 1–17
DOI: 10.1186/s12943-021-01308-8
Google Scholar
[15]
L. Xia et al., "Role of the NFκB-signaling pathway in cancer," Onco. Targets. Ther. 11 (2018) 2063–(2073)
Google Scholar
[16]
J. Kang, Z. Guo, H. Zhang, R. Guo, X. Zhu, and X. Guo, Dual Inhibition of EGFR and IGF-1R Signaling Leads to Enhanced Antitumor Efficacy against Esophageal Squamous Cancer, Int. J. Mol. Sci. 23(18) (2022) 1–18
DOI: 10.3390/ijms231810382
Google Scholar
[17]
A. B. Baba et al., Transforming Growth Factor-Beta (TGF-β) Signaling in Cancer-A Betrayal Within, Front. Pharmacol. 13 (2022) 1–16
Google Scholar
[18]
T. Zhan, N. Rindtorff, and M. Boutros, Wnt signaling in cancer, Oncogene. 36(11) (2017) 1461–1473
DOI: 10.1038/onc.2016.304
Google Scholar
[19]
F. Bianconi, E. Baldelli, V. Ludovini, L. Crinò, A. Flacco, and P. Valigi, Computational model of EGFR and IGF1R pathways in lung cancer: A Systems Biology approach for Translational Oncology, Biotechnol. Adv. 30(1) (2012) 142–153
DOI: 10.1016/j.biotechadv.2011.05.010
Google Scholar
[20]
P. F. Ayodele et al., Illustrated Procedure to Perform Molecular Docking Using PyRx and Biovia Discovery Studio Visualizer: A Case Study of 10kt With Atropine, Prog. Drug Discov. Biomed. Sci. 6(1) (2023)
DOI: 10.36877/pddbs.a0000424
Google Scholar
[21]
X.-Y. Meng, H.-X. Zhang, M. Mezel, and Meng Cui, Molecular Docking: A Powerful Approach for Structure Based Drug Discovery, Curr Comput Aided Drug Des. 7(2) (2011). 146–157
DOI: 10.2174/157340911795677602
Google Scholar
[22]
I. Asiamah, S. A. Obiri, W. Tamekloe, F. A. Armah, and L. S. Borquaye, Applications of molecular docking in natural products-based drug discovery, Sci. African. 20 (2023) 1–8
DOI: 10.1016/j.sciaf.2023.e01593
Google Scholar
[23]
T. I. Adelusi et al., Molecular modeling in drug discovery, Informatics Med. Unlocked, 29 100880 (2022)
Google Scholar
[24]
I. V. Ogungbe and W. N. Setzer, The Potential of secondary metabolites from plants as drugs or leads against protozoan neglected diseases-Part III: In-Silico molecular docking investigations, Molecules. 21(10) (2016) 25] M. Zulfat et al., Identification of novel NLRP3 inhibitors as therapeutic options for epilepsy by machine learning-based virtual screening, molecular docking and biomolecular simulation studies, Heliyon. 10(15) (2024)
DOI: 10.3390/molecules21101389
Google Scholar
[26]
D. A. Skoog, D. M. West, F. J. Holler, and S. R. Crouch, Fundamentals of Analytical Chemistry, 6(2) (2014).
Google Scholar
[27]
R. Parasuraman, S. Balamurugan, S. Muralidharan, K. Jayaraj, V. Ijayan, and S. Anish, An Overview of Liquid Chromatography-Mass Spectroscopy Instrumentation, Pharm. Methods. 5(2) (2014) 47–55
Google Scholar
[28]
C. Guan, X. Zhou, H. Li, X. Ma, and J. Zhuang, NF-κB inhibitors gifted by nature: The anticancer promise of polyphenol compounds, Biomed. Pharmacother. 156 113951 (2022)
DOI: 10.1016/j.biopha.2022.113951
Google Scholar
[29]
A. Chauhan, A. U. Islam, H. Prakash, and S. Singh, Phytochemicals targeting NF-κB signaling: Potential anti-cancer interventions, J. Pharm. Anal. 12(3) (2022) 394–405
DOI: 10.1016/j.jpha.2021.07.002
Google Scholar
[30]
I. Piotrowski, K. Kulcenty, and W. Suchorska, Interplay between inflammation and cancer, Reports Pract. Oncol. Radiother. 25(3) (2020), 422–427
DOI: 10.1016/j.rpor.2020.04.004
Google Scholar
[31]
T. Zhang, C. Ma, Z. Zhang, H. Zhang, and H. Hu, NF-κB signaling in inflammation and cancer, MedComm. 2(4) (2021) 618–653
DOI: 10.1002/mco2.104
Google Scholar
[32]
S. Shin, N. C. Ha, B. C. Oh, T. K. Oh, and B. H. Oh, Enzyme mechanism and catalytic property of β propeller phytase, Structure, 9(9) (2001) 851–858
DOI: 10.1016/s0969-2126(01)00637-2
Google Scholar
[33]
Z. J. Chia, Y. N. Cao, P. J. Little, and D. Kamato, Transforming growth factor-β receptors: versatile mechanisms of ligand activation, Acta Pharmacol. Sin. 45(7) (2024) 1337–1348
DOI: 10.1038/s41401-024-01235-6
Google Scholar
[34]
J. Massague, TGFβ in Cancer, Cell, 134(2) 2008 215–230
Google Scholar
[35]
Y. Yang et al., The Role of TGF- β Signaling Pathways in Cancer and Its Potential as a Therapeutic Target, Evidence-based Complement. Altern. Med. (2021)
Google Scholar
[36]
H. Zhao et al., Wnt signaling in colorectal cancer: pathogenic role and therapeutic target, Mol. Cancer. 21(1) (2022) 1–34
Google Scholar
[37]
R. Mancinelli et al., Multifaceted roles of GSK-3 in cancer and autophagy-related diseases, Oxid. Med. Cell. Longev. (2017)
Google Scholar
[38]
Q. Liu, S. Yu, W. Zhao, S. Qin, Q. Chu, and K. Wu, EGFR-TKIs resistance via EGFR-independent signaling pathways, Mol. Cancer. 17(1) (2018) 1–9
DOI: 10.1186/s12943-018-0793-1
Google Scholar
[39]
E. Alfaro-Arnedo et al., IGF1R acts as a cancer-promoting factor in the tumor microenvironment facilitating lung metastasis implantation and progression, Oncogene, 41(28) (2022) 3625–3639.
DOI: 10.1038/s41388-022-02376-w
Google Scholar