[1]
S.U.S. Choi, D. A. Singer, H. P. Wang, Development and Applications of Non-Newtonian Flows, ASME FED. 66, (1995) 99 – 105.
Google Scholar
[2]
J. Buongiorno, Convective Transport in Nanofluids, Journal of Heat Transfer. 128, (2006) 240 – 250.
DOI: 10.1115/1.2150834
Google Scholar
[3]
A. C. Eringen, Simple micropolar fluids, Int. J. Eng. Sci. 2, (1964) 205 – 207.
Google Scholar
[4]
R. Bird, E. S. Warren, N. L. Edwin, Transport Phenomena, John Wiley and Sons, United States of America, Inc. New York, Second Edition. 2 (2020) 1-14.
Google Scholar
[5]
M.M. Keshtkar, B. Amiri, MHD flow and heat transfer on a Nanofluid over a permeable stretching sheet, International Journal of Engineering and Innovative Technology. 3, (2013) 2277 – 3754.
Google Scholar
[6]
K. Das, P. R. Duari, P. K. Kundu, Nanofluid flow over an unsteady stretching surface in the presence of thermal radiation, Alexandria Engineering Journal. 53, (2014) 737 – 745.
DOI: 10.1016/j.aej.2014.05.002
Google Scholar
[7]
H. S. A. El-dawy, R. S. R. Gorla, Effects of Nanoparticles on Non-Darcy Mixed Convective Heat Transfer in Nanofluids over a Shrinking and Stretching Wedge, Applied Computational Mathematics. 8, 4, (2019) 70 – 74.
DOI: 10.11648/j.acm.20190804.11
Google Scholar
[8]
T. Hayat, F. Haider, A. Alsaedi, B. Ahmad, Unsteady flow of nanofluid through porous medium with variable characteristics, International Communications in heat and mass transfer. 119, (2020) 104904.
DOI: 10.1016/j.icheatmasstransfer.2020.104904
Google Scholar
[9]
B. Ali, R. A. Naqvi, Y. Nie, S. A. Khan, M. T. Sadiq, A. U. Rehman, S. Abdal, Variable viscosity effects on unsteady MHD an axisymmetric nanofluid flow over a stretching surface with thermo-diffusion: Fem approach, Symmetry. 12(2), (2020) 234.
DOI: 10.3390/sym12020234
Google Scholar
[10]
A. Dawar, Z. Shah, S. Islam, W. Deebani, and M. Shutaywi, MHD stagnation point flow of a water-based copper nanofluid past a flat plate with solar radiation effect, Journal of Petroleum Science Engineering. 220 (2023) 111148.
DOI: 10.1016/j.petrol.2022.111148
Google Scholar
[11]
Y.Y. Lok, A. Ishak, I. Pop, Oblique stagnation slip flow of a micropolar fluid towards a stretching/shrinking surface: a stability analysis, Chin. J. Phys. 56, (2018) 3062 – 3072.
DOI: 10.1016/j.cjph.2018.10.016
Google Scholar
[12]
L.A. Lund, Z. Omar, S. Dero, I. Khan, Linear Stability analysis of MHD flow of Micropolar fluid with thermal radiation and convective boundary condition: Exact solution, Heat Transf. Asian Res., 393 (2015) 490-497.
DOI: 10.1002/htj.21621
Google Scholar
[13]
K. Guedri, W. A. Khan, N. A. Alshehri, M. Mamat, M. Jameel, Y. J. Xu, A. M. Galal, Thermal aspects of magnetically driven micro-rotational nanofluid configured by exponential radiating surface, Case Studies in Thermal Engineering. 39, (2022) 102322.
DOI: 10.1016/j.csite.2022.102322
Google Scholar
[14]
K.L. Hsiao, Micropolar nanofluid flow with MHD and viscous dissipation effects towards a stretching sheet with multimedia feature, International Journal of Heat and Mass Transfer. 112, (2017) 983-990.
DOI: 10.1016/j.ijheatmasstransfer.2017.05.042
Google Scholar
[15]
M. Irfan, M. Khan, W. A. Khan, L. Ahmad, Influence of binary chemical reaction with Arrhenius activation energy in MHD nonlinear radiative flow of unsteady Carreau nanofluid: dual solutions, Applied Physics A. 125, (2019) 1-11.
DOI: 10.1007/s00339-019-2457-4
Google Scholar
[16]
M. Izadi, M. A. Sheremet, S. A. M. Mehryan, I. Pop, H. F. Öztop, N. Abu-Hamdeh, MHD thermogravitational convection and thermal radiation of a micropolar nanoliquid in a porous chamber, International Communications in Heat and Mass Transfer. 110, (2020) 104409.
DOI: 10.1016/j.icheatmasstransfer.2019.104409
Google Scholar
[17]
E. Karvelas, G. Sofiadis, T. Papathanasiou, I. Sarris, Effect of Micropolar Fluid Properties on the Blood Flow in a Human carotid Model, Fluids. 5, (2020)125.
DOI: 10.3390/fluids5030125
Google Scholar
[18]
A. Khan, A. Saeed, A. Tassaddiq, T. Gul, S. Mukhtar, P. Kumam, W. Kumam, Bio-convective micropolar nanofluid flow over thin moving needle subject to Arrhenius activation energy, viscous dissipation and binary chemical reaction, Case Studies in Thermal Engineering. 25, (2021) 100989.
DOI: 10.1016/j.csite.2021.100989
Google Scholar
[19]
H. Alrabaiah, I. Haq, A. Saeed, A. Dawar, W. Weera, A. M. Galal, Generalized heat and mass transport features of MHD Maxwell nanofluid flows past a linearly Bi-stretching surface in the presence of motile microorganisms and chemical reaction, South African Journal of Chemical Engineering. 43, (2023) 146-161.
DOI: 10.1016/j.sajce.2022.10.013
Google Scholar
[20]
A.M. Obalalu, Heat and mass transfer in an unsteady squeezed Casson fluid flow with novel thermophysical properties: Analytical and numerical solution, Heat Transfer. 50 (2021) 7988-8011.
DOI: 10.1002/htj.22263
Google Scholar
[21]
K.A.M. Alharbi, Z. Khan, S. Zuhra, S. Islam, A. Ali, E. Tag-Eldin, S. R. Mahmoud, Numerical Study of the Electromagnetohydrodynamic Bioconvection Flow of Micropolar Nanofluid through a Stretching Sheet with Thermal Radiation and Stratification, ACS omega. 7(47), (2022) 42733-42751.
DOI: 10.1021/acsomega.2c04145
Google Scholar
[22]
M. S. Kausar, A. Hussanan, M. Waqas, M. Mamat, Boundary layer flow of micropolar nanofluid towards a permeable stretching sheet in the presence of porous medium with thermal radiation and viscous dissipation, Chinese Journal of Physics. 78, (2022) 435-452.
DOI: 10.1016/j.cjph.2022.06.027
Google Scholar
[23]
M. G. Reddy and K. G. Kumar, Cattaneo-Christov heat flux feature on carbon nanotubes filled with micropolar liquid over a melting surface: a streamline study, International Communications in Heat Mass Transfer. 122 (2021) 105142.
DOI: 10.1016/j.icheatmasstransfer.2021.105142
Google Scholar
[24]
K. Rafique, H. Alotaibi, N. Ibrar, I. Khan, Stratified Flow of Micropolar Nanofluid over Riga Plate: Numerical Analysis, Energies. 15, (2022) 316.
DOI: 10.3390/en15010316
Google Scholar
[25]
L.A. Lund, Z. Omar, and I. Khan, Mathematical analysis of magnetohydrodynamic (MHD) flow of micropolar nanofluid under buoyancy effects past a vertical shrinking surface: Dual solutions, Heliyon. 5(9), (2019) e02432.
DOI: 10.1016/j.heliyon.2019.e02432
Google Scholar
[26]
K. Rafique, M. I. Anwar, M. Misiran, Numerical study on micropolar nanofluid flow over an inclined surface by means of keller-box, Asian J. Probab. Stat. 4, (2019) 1-21.
DOI: 10.9734/ajpas/2019/v4i430122
Google Scholar
[27]
K. Rafique, M. I. Anwar, M. Misiran, I. Khan, D. Baleanu, K. S. Nisar, E. M. Sherif, A. Seikh, Hydromagnetic Flow of Micropolar nanofluid, Symmetry. 12, (2020) 251.
DOI: 10.3390/sym12020251
Google Scholar
[28]
K. Rafique, I. A. Muhammed, M. Masnita, K. Ilyas, H. S. Asiful, M. S. El-Sayed, S. N. Kottakkaran, Keller-Box Simulation for the Buongiorno Mathematical Model of Micropolar Nanofluid Flow over a Non-linear Inclined Surface, Processes. 7(2019) (926) 1 – 15.
DOI: 10.3390/pr7120926
Google Scholar
[29]
S.O Salawu, AM. Obalalu, and M. Shamshuddin, Nonlinear Solar Thermal Radiation Efficiency and Energy Optimization for Magnetized Hybrid Prandtl–Eyring Nanoliquid in Aircraft, Arabian Journal for Science Engineering. (2022) 1-12.
DOI: 10.1007/s13369-022-07080-1
Google Scholar
[30]
O. A. Ajala and P. Adegbite, Hydromagnetic Flow of Micropolar Nanofluids with Co-effects of Thermal Radiation and Chemical Reaction over an Inclined Permeable Stretching Surface, Beni–Suef Univ. J. Basic Appl Sci. 12, (2023) 86.
DOI: 10.1186/s43088-023-00424-2
Google Scholar
[31]
A. M. Obalalu, O. A. Ajala, T. A. Adeosun, A. O. Akindele, O. A. Oladapo, O. A. Olajide, P. Adegbite, Significance of variable electrical conductivity on non-Newtonian fluid flow between two vertical plates in the coexistence of Arrhenius energy and exothermic chemical reaction. Partial Diff Equ Appl Math. 29 (2022) 101714.
DOI: 10.1016/j.padiff.2021.100184
Google Scholar