Bio-Convective Flow of Micropolar Nanofluids over an Inclined Permeable Stretching Surface with Radiative Activation Energy

Article Preview

Abstract:

The focal concern of this study is to examine the behaviour of bio-convective flow featuring micropolar nanofluids over an inclined permeable stretching surface while considering the influence of radiative activation energy. This investigation addresses the complex interplay of factors such as biological activity, convective heat and mass transfer, unique attributes of micropolar fluids, the dynamics of nanofluids, and radiative effects. This analysis employed Buongiorno’s model, considering thermal radiation and activation energy on the bioconvective flow of micropolar nanofluids over an inclined stretching surface. Some suitable similarity variables were used to obtain a set of non-linear differential equations from the initial partial differential equations which were then solved numerically using the Runge-Kutta Fehberg method along with shooting technique. The effects of some physical parameters were examined on the velocity, temperature, concentration, and microorganism density profiles of the flow. The result revealed that each increase in the heat source/sink, thermal radiation, thermophoresis, and Brownian motion lead to a corresponding increase in the thermal boundary layer; activation energy increased the concentration while Peclet number and bioconvective Lewis number declined the microorganism density profile. Insights gleaned from this study can find applications in biomedical fields. Understanding the behavior of bio-convective nanofluids has implications for controlled heat transfer in medical applications like hyperthermia treatments or targeted drug delivery, thereby impacting patient care.

You might also be interested in these eBooks

Info:

Pages:

1-13

Citation:

Online since:

July 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S.U.S. Choi, D. A. Singer, H. P. Wang, Development and Applications of Non-Newtonian Flows, ASME FED. 66, (1995) 99 – 105.

Google Scholar

[2] J. Buongiorno, Convective Transport in Nanofluids, Journal of Heat Transfer. 128, (2006) 240 – 250.

DOI: 10.1115/1.2150834

Google Scholar

[3] A. C. Eringen, Simple micropolar fluids, Int. J. Eng. Sci. 2, (1964) 205 – 207.

Google Scholar

[4] R. Bird, E. S. Warren, N. L. Edwin, Transport Phenomena, John Wiley and Sons, United States of America, Inc. New York, Second Edition. 2 (2020) 1-14.

Google Scholar

[5] M.M. Keshtkar, B. Amiri, MHD flow and heat transfer on a Nanofluid over a permeable stretching sheet, International Journal of Engineering and Innovative Technology. 3, (2013) 2277 – 3754.

Google Scholar

[6] K. Das, P. R. Duari, P. K. Kundu, Nanofluid flow over an unsteady stretching surface in the presence of thermal radiation, Alexandria Engineering Journal. 53, (2014) 737 – 745.

DOI: 10.1016/j.aej.2014.05.002

Google Scholar

[7] H. S. A. El-dawy, R. S. R. Gorla, Effects of Nanoparticles on Non-Darcy Mixed Convective Heat Transfer in Nanofluids over a Shrinking and Stretching Wedge, Applied Computational Mathematics. 8, 4, (2019) 70 – 74.

DOI: 10.11648/j.acm.20190804.11

Google Scholar

[8] T. Hayat, F. Haider, A. Alsaedi, B. Ahmad, Unsteady flow of nanofluid through porous medium with variable characteristics, International Communications in heat and mass transfer. 119, (2020) 104904.

DOI: 10.1016/j.icheatmasstransfer.2020.104904

Google Scholar

[9] B. Ali, R. A. Naqvi, Y. Nie, S. A. Khan, M. T. Sadiq, A. U. Rehman, S. Abdal, Variable viscosity effects on unsteady MHD an axisymmetric nanofluid flow over a stretching surface with thermo-diffusion: Fem approach, Symmetry. 12(2), (2020) 234.

DOI: 10.3390/sym12020234

Google Scholar

[10] A. Dawar, Z. Shah, S. Islam, W. Deebani, and M. Shutaywi, MHD stagnation point flow of a water-based copper nanofluid past a flat plate with solar radiation effect, Journal of Petroleum Science Engineering. 220 (2023) 111148.

DOI: 10.1016/j.petrol.2022.111148

Google Scholar

[11] Y.Y. Lok, A. Ishak, I. Pop, Oblique stagnation slip flow of a micropolar fluid towards a stretching/shrinking surface: a stability analysis, Chin. J. Phys. 56, (2018) 3062 – 3072.

DOI: 10.1016/j.cjph.2018.10.016

Google Scholar

[12] L.A. Lund, Z. Omar, S. Dero, I. Khan, Linear Stability analysis of MHD flow of Micropolar fluid with thermal radiation and convective boundary condition: Exact solution, Heat Transf. Asian Res., 393 (2015) 490-497.

DOI: 10.1002/htj.21621

Google Scholar

[13] K. Guedri, W. A. Khan, N. A. Alshehri, M. Mamat, M. Jameel, Y. J. Xu, A. M. Galal, Thermal aspects of magnetically driven micro-rotational nanofluid configured by exponential radiating surface, Case Studies in Thermal Engineering. 39, (2022) 102322.

DOI: 10.1016/j.csite.2022.102322

Google Scholar

[14] K.L. Hsiao, Micropolar nanofluid flow with MHD and viscous dissipation effects towards a stretching sheet with multimedia feature, International Journal of Heat and Mass Transfer. 112, (2017) 983-990.

DOI: 10.1016/j.ijheatmasstransfer.2017.05.042

Google Scholar

[15] M. Irfan, M. Khan, W. A. Khan, L. Ahmad, Influence of binary chemical reaction with Arrhenius activation energy in MHD nonlinear radiative flow of unsteady Carreau nanofluid: dual solutions, Applied Physics A. 125, (2019) 1-11.

DOI: 10.1007/s00339-019-2457-4

Google Scholar

[16] M. Izadi, M. A. Sheremet, S. A. M. Mehryan, I. Pop, H. F. Öztop, N. Abu-Hamdeh, MHD thermogravitational convection and thermal radiation of a micropolar nanoliquid in a porous chamber, International Communications in Heat and Mass Transfer. 110, (2020) 104409.

DOI: 10.1016/j.icheatmasstransfer.2019.104409

Google Scholar

[17] E. Karvelas, G. Sofiadis, T. Papathanasiou, I. Sarris, Effect of Micropolar Fluid Properties on the Blood Flow in a Human carotid Model, Fluids. 5, (2020)125.

DOI: 10.3390/fluids5030125

Google Scholar

[18] A. Khan, A. Saeed, A. Tassaddiq, T. Gul, S. Mukhtar, P. Kumam, W. Kumam, Bio-convective micropolar nanofluid flow over thin moving needle subject to Arrhenius activation energy, viscous dissipation and binary chemical reaction, Case Studies in Thermal Engineering. 25, (2021) 100989.

DOI: 10.1016/j.csite.2021.100989

Google Scholar

[19] H. Alrabaiah, I. Haq, A. Saeed, A. Dawar, W. Weera, A. M. Galal, Generalized heat and mass transport features of MHD Maxwell nanofluid flows past a linearly Bi-stretching surface in the presence of motile microorganisms and chemical reaction, South African Journal of Chemical Engineering. 43, (2023) 146-161.

DOI: 10.1016/j.sajce.2022.10.013

Google Scholar

[20] A.M. Obalalu, Heat and mass transfer in an unsteady squeezed Casson fluid flow with novel thermophysical properties: Analytical and numerical solution, Heat Transfer. 50 (2021) 7988-8011.

DOI: 10.1002/htj.22263

Google Scholar

[21] K.A.M. Alharbi, Z. Khan, S. Zuhra, S. Islam, A. Ali, E. Tag-Eldin, S. R. Mahmoud, Numerical Study of the Electromagnetohydrodynamic Bioconvection Flow of Micropolar Nanofluid through a Stretching Sheet with Thermal Radiation and Stratification, ACS omega. 7(47), (2022) 42733-42751.

DOI: 10.1021/acsomega.2c04145

Google Scholar

[22] M. S. Kausar, A. Hussanan, M. Waqas, M. Mamat, Boundary layer flow of micropolar nanofluid towards a permeable stretching sheet in the presence of porous medium with thermal radiation and viscous dissipation, Chinese Journal of Physics. 78, (2022) 435-452.

DOI: 10.1016/j.cjph.2022.06.027

Google Scholar

[23] M. G. Reddy and K. G. Kumar, Cattaneo-Christov heat flux feature on carbon nanotubes filled with micropolar liquid over a melting surface: a streamline study, International Communications in Heat Mass Transfer. 122 (2021) 105142.

DOI: 10.1016/j.icheatmasstransfer.2021.105142

Google Scholar

[24] K. Rafique, H. Alotaibi, N. Ibrar, I. Khan, Stratified Flow of Micropolar Nanofluid over Riga Plate: Numerical Analysis, Energies. 15, (2022) 316.

DOI: 10.3390/en15010316

Google Scholar

[25] L.A. Lund, Z. Omar, and I. Khan, Mathematical analysis of magnetohydrodynamic (MHD) flow of micropolar nanofluid under buoyancy effects past a vertical shrinking surface: Dual solutions, Heliyon. 5(9), (2019) e02432.

DOI: 10.1016/j.heliyon.2019.e02432

Google Scholar

[26] K. Rafique, M. I. Anwar, M. Misiran, Numerical study on micropolar nanofluid flow over an inclined surface by means of keller-box, Asian J. Probab. Stat. 4, (2019) 1-21.

DOI: 10.9734/ajpas/2019/v4i430122

Google Scholar

[27] K. Rafique, M. I. Anwar, M. Misiran, I. Khan, D. Baleanu, K. S. Nisar, E. M. Sherif, A. Seikh, Hydromagnetic Flow of Micropolar nanofluid, Symmetry. 12, (2020) 251.

DOI: 10.3390/sym12020251

Google Scholar

[28] K. Rafique, I. A. Muhammed, M. Masnita, K. Ilyas, H. S. Asiful, M. S. El-Sayed, S. N. Kottakkaran, Keller-Box Simulation for the Buongiorno Mathematical Model of Micropolar Nanofluid Flow over a Non-linear Inclined Surface, Processes. 7(2019) (926) 1 – 15.

DOI: 10.3390/pr7120926

Google Scholar

[29] S.O Salawu, AM. Obalalu, and M. Shamshuddin, Nonlinear Solar Thermal Radiation Efficiency and Energy Optimization for Magnetized Hybrid Prandtl–Eyring Nanoliquid in Aircraft, Arabian Journal for Science Engineering. (2022) 1-12.

DOI: 10.1007/s13369-022-07080-1

Google Scholar

[30] O. A. Ajala and P. Adegbite, Hydromagnetic Flow of Micropolar Nanofluids with Co-effects of Thermal Radiation and Chemical Reaction over an Inclined Permeable Stretching Surface, Beni–Suef Univ. J. Basic Appl Sci. 12, (2023) 86.

DOI: 10.1186/s43088-023-00424-2

Google Scholar

[31] A. M. Obalalu, O. A. Ajala, T. A. Adeosun, A. O. Akindele, O. A. Oladapo, O. A. Olajide, P. Adegbite, Significance of variable electrical conductivity on non-Newtonian fluid flow between two vertical plates in the coexistence of Arrhenius energy and exothermic chemical reaction. Partial Diff Equ Appl Math. 29 (2022) 101714.

DOI: 10.1016/j.padiff.2021.100184

Google Scholar