[1]
M.R. Senra, M.d.F.V. Marques, Synthetic polymeric materials for bone replacement, J. Composites Sci. 4(4) (2020) 191.
Google Scholar
[2]
K.T. Chu, Y. Oshida, E.B. Hancock, M.J. Kowolik, T. Barco, S.L. Zunt, Hydroxyapatite/PMMA composites as bone cements, Biomed. Mater. Eng. 14(1) (2004) 87–105.
Google Scholar
[3]
U. Dubey, S. Kesarwani, P. Kyratsis, R.K. Verma, Development of modified polymethyl methacrylate and hydroxyapatite (PMMA/HA) biomaterial composite for orthopaedic products, in: P. Kyratsis, N. Efkolidis, J.P. Davim (Eds.), Advances in Product Design Engineering, Springer, Cham. 2022, p.159–178.
DOI: 10.1007/978-3-030-98124-2_7
Google Scholar
[4]
S. Aghyarian, L.C. Rodriguez, J. Chari, E. Bentley, V. Kosmopoulos, I.H. Lieberman, D.C. Rodrigues, Characterization of a new composite PMMA-HA/Brushite bone cement for spinal augmentation, J. Biomater. Appl. 29(5) (2014) 688–698.
DOI: 10.1177/0885328214544770
Google Scholar
[5]
M. Jäger, A. Wilke, Comprehensive biocompatibility testing of a new PMMA-HA bone cement versus conventional PMMA cement in vitro, J. Biomater. Sci. Polym. Ed. 14(11) (2003) 1283–1298.
DOI: 10.1163/156856203322553491
Google Scholar
[6]
H. Shi, Z. Zhou, W. Li, Y. Fan, Z. Li, J. Wei, Hydroxyapatite based materials for bone tissue engineering: A brief and comprehensive introduction, Cryst. 11(2) (2021) 149.
DOI: 10.3390/cryst11020149
Google Scholar
[7]
R. Kumar, S. Mohanty, Hydroxyapatite: a versatile bioceramic for tissue engineering application, J. Inorg. Organomet. Polym. Mater. 32 (2022) 4461–4477.
DOI: 10.1007/s10904-022-02454-2
Google Scholar
[8]
S. Lara-Ochoa, W. Ortega-Lara, C.E. Guerrero-Beltrán, Hydroxyapatite nanoparticles in drug delivery: physicochemistry and applications, Pharm. 13(10) (2021) 1642.
DOI: 10.3390/pharmaceutics13101642
Google Scholar
[9]
K.J. Moreno, J.S. García-Miranda, C. Hernández-Navarro, F. Ruiz-Guillén, L.D. Aguilera-Camacho, R. Lesso, Preparation and performance evaluation of PMMA/HA nanocomposite as bulk material, J. Composite Mater. 49(11) (2015) 1345–1353.
DOI: 10.1177/0021998314533713
Google Scholar
[10]
S.M. Zebarjad, S.A. Sajjadi, T.E. Sdrabadi, A.Yaghmaei, B. Naderi, A study on mechanical properties of PMMA/hydroxyapatite nanocomposite, Engineering, 3 (2011) 795–801.
DOI: 10.4236/eng.2011.38096
Google Scholar
[11]
W.L. Tham, W.S. Chow, Z.A. Mohd Ishak, Flexural and morphological properties of poly (methyl methacrylate)/hydroxyapatite composites: effects of planetary ball mill grinding time, J. Reinf. Plast. Composites, 29(13) (2010) 2065–2075.
DOI: 10.1177/0731684409344899
Google Scholar
[12]
M. Wang, R. Joseph, W. Bonfield, Hydroxyapatite-polyethylene composites for bone substitution: effects of ceramic particle size and morphology, Biomater. 19(24) (1998) 2357–2366.
DOI: 10.1016/s0142-9612(98)00154-9
Google Scholar
[13]
Z. Liu, Y. Tang, T. Kang, M. Rao, K. Li, Q. Wang, C. Quan, C. Zhang, Q. Jiang, H. Shen, Synergistic effect of HA and BMP-2 mimicking peptide on the bioactivity of HA/PMMA bone cement, Colloids Surf. B Biointerfaces, 131 (2015) 39–46.
DOI: 10.1016/j.colsurfb.2015.04.032
Google Scholar
[14]
X. Sun, Z. Wu, D. He, K. Shen, X. Liu, H. Li, W. Jin, Bioactive injectable polymethylmethacrylate/silicate bioceramic hybrid cements for percutaneous vertebroplasty and kyphoplasty, J. Mech. Behav. Biomed. Mater. 96 (2019) 125–135.
DOI: 10.1016/j.jmbbm.2019.04.044
Google Scholar
[15]
Z.-C. Xing, S.-J. Han, Y.-S. Shin, T.-H. Koo, S. Moon, Y. Jeong, I.-K. Kang, Enhanced osteoblast responses to poly (methyl methacrylate)/hydroxyapatite electrospun nanocomposites for bone tissue engineering, J. Biomater. Sci. Polymer Ed. 24(1) (2013) 61–76.
DOI: 10.1163/156856212x623526
Google Scholar
[16]
Q. Hu, H.B. Liu, W.J. Weng, K. Cheng, C.L. Song, P.Y. Du, G.L. Zhao, G. Shen, J.X. Wang, G.R. Han, Emulsion technique preparation of Nano-HA/PMMA composites and in vitro evaluation, in: Key Engineering Materials, Trans. Tech. Publ. 2006.
Google Scholar
[17]
A.T. Cucuruz, E. Andronescu, A. Ficai, A. Ilie, F. Iordache, Synthesis and characterization of new composite materials based on poly (methacrylic acid) and hydroxyapatite with applications in dentistry, Int, J. Pharm. 510(2) (2016) 516–523.
DOI: 10.1016/j.ijpharm.2016.01.061
Google Scholar
[18]
S.K. Acharya, P. Mishra, S.K. Mehar, Effect of surface treatment on the mechanical properties of bagasse fiber reinforced polymer composite, BioResour. 6(3) (2011) 3155–3165.
DOI: 10.15376/biores.6.3.3155-3165
Google Scholar
[19]
Y. Jiang, Z. Yuan, J. Huang, Substituted hydroxyapatite: a recent development, Mater. Technol. 35(11–12) (2020) 785–796.
Google Scholar
[20]
I. Ullah, A. Gloria, W. Zhang, M.W. Ullah, B. Wu, W. Li, M. Domingos, X. Zhang, Synthesis and characterization of sintered Sr/Fe-modified hydroxyapatite bioceramics for bone tissue engineering applications, ACS Biomater. Sci. Eng. 6(1) (2019) 375–388.
DOI: 10.1021/acsbiomaterials.9b01666
Google Scholar
[21]
A. Ressler, A. Žužić, I. Ivanišević, N. Kamboj, H. Ivanković, Ionic substituted hydroxyapatite for bone regeneration applications: A review, Open Ceramics 6 (2021) 100122.
DOI: 10.1016/j.oceram.2021.100122
Google Scholar
[22]
B. Kołodziejska, N. Stępień, J. Kolmas, The influence of strontium on bone tissue metabolism and its application in osteoporosis treatment, Int. J. Mol. Sci. 22(12) (2021) 6564.
DOI: 10.3390/ijms22126564
Google Scholar
[23]
J. Kolmas, F. Velard, A. Jaguszewska, F. Lemaire, H. Kerdjoudj, S.C. Gangloff, A. Kaflak, Substitution of strontium and boron into hydroxyapatite crystals: Effect on physicochemical properties and biocompatibility with human Wharton-Jelly stem cells, Mater. Sci. Eng. C 79 (2017) 638–646.
DOI: 10.1016/j.msec.2017.05.066
Google Scholar
[24]
E. Tunçay, T.T. Demirtaş, M. Gümüşderelioğlu, Microwave-induced production of boron-doped HAp (B-HAp) and B-HAp coated composite scaffolds, J. Trace Elem. Med. Biol. 40 (2017) 72–81.
DOI: 10.1016/j.jtemb.2016.12.005
Google Scholar
[25]
B. Yılmaz, Z. Evis, Boron-substituted bioceramics: A review, J. Boron 1(1) (2016) 6–14.
Google Scholar
[26]
E.Ç. Dede, P. Korkusuz, E. Bilgiç, M.A. Çetinkaya, F. Korkusuz, Boron nano-hydroxyapatite composite increases the bone regeneration of ovariectomized rabbit femurs, Bio. Trace Elem. Res. 200 (2022) 183–196.
DOI: 10.1007/s12011-021-02626-0
Google Scholar
[27]
G.-I. Kontogianni, A.F. Bonatti, C. De Maria, R. Naseem, P. Melo, C. Coelho, G. Vozzi, K. Dalgarno, P. Quadros, C. Vitale-Brovarone, M. Chatzinikolaidou, Promotion of in vitro osteogenic activity by melt extrusion-based plla/pcl/phbv scaffolds enriched with nano-hydroxyapatite and strontium substituted nano-hydroxyapatite, Polym. 15(4) (2023) 1052.
DOI: 10.3390/polym15041052
Google Scholar
[28]
R. Ternane, M.Th. Cohen-Adad, G. Panczer, C. Goutaudier, N. Kbir-Ariguib, M. Trabelsi-Ayedi, P. Florian, D. Massiot, Introduction of boron in hydroxyapatite: synthesis and structural characterization, J. Alloys Compd. 333(1–2) (2002) 62–71.
DOI: 10.1016/s0925-8388(01)01558-4
Google Scholar
[29]
I. Cacciotti, Multisubstituted hydroxyapatite powders and coatings: The influence of the codoping on the hydroxyapatite performances, Int. J. Appl. Ceramic Technol. 16(5) (2019) 1864–1884.
DOI: 10.1111/ijac.13229
Google Scholar
[30]
A. Shirazi, New insights into the role of Al2O3 nano-supplements in mechanical performance of PMMA and PMMA/HA bone cements using nanoindentation and nanoscratch measurements, Mater. Technol. Adv. Perform. Mater. 36(4) (2021) 212–220.
DOI: 10.1080/10667857.2020.1741939
Google Scholar
[31]
W.S. Chow, A.A. Aziz, Mechanical and thermal properties of hydroxyapatite filled poly (methyl methacrylate) composites, in: Proceedings of the Polymer Processing Society 24th Annual Meeting, Citeseer, 2008.
Google Scholar
[32]
P. Cheang, K. Khor, Effect of particulate morphology on the tensile behaviour of polymer–hydroxyapatite composites, Mater. Sci. Eng. A 345(1–2) (2003) 47–54.
DOI: 10.1016/s0921-5093(02)00284-8
Google Scholar
[33]
C. Capuccini, P. Torricelli, F. Sima, E. Boanini, C. Ristoscu, B. Bracci, G. Socol, M. Fini, I.N. Mihailescu, A. Bigi, Strontium-substituted hydroxyapatite coatings synthesized by pulsed-laser deposition: in vitro osteoblast and osteoclast response, Acta biomater. 4(6) (2008) 1885–1893.
DOI: 10.1016/j.actbio.2008.05.005
Google Scholar