Preparation and Characterization of PMMA/SrBHA Composites for Bone Replacement Applications

Article Preview

Abstract:

Polymethyl methacrylate (PMMA) is a polymer that is a suitable biomaterial for applications such as bone cement and replacement hip joints because it is inert, non-toxic, and has good mechanical properties. Hydroxyapatite (HA) is among the most thoroughly investigated bioceramics because its composition is similar to that of human bone and it has excellent biocompatibility and osteoconductive properties. Moreover, HA can be modified to regulate its physiochemical properties. In this study, boron and strontium were co-substituted into HA (SrBHA) to improve its biological characteristics. Previous studies have shown that strontium can increase bone density, although it negatively affects bone production. Moreover, boron helps to regulate the calcium balance to prevent bone loss. PMMA/SrBHA composites were prepared with different concentrations of SrBHA powder and the effects on the mechanical properties of the composites were investigated. The composites were fabricated using twin-screw extruders and compressed into test specimens using compression molding machinery. When the SrBHA powder concentration was <10 phr, the SrBHA particles were uniformly dispersed throughout the composite via a continuous polymer matrix reaction. Moreover, this concentration produced the greatest increase in compressive strength compared to the sample with no SrBHA (127.4 MPa). The composites were analyzed using energy-dispersive X-ray analysis, Fourier-transform infrared spectroscopy, and X-ray diffraction to determine the dispersion of the reinforced nanoparticles. Scanning electron microscopy (SEM) was used to analyze the dispersion of the SrBHA powder inside the matrix and to determine the causes of the fractures. The SrBHA powder improved the mechanical properties of PMMA, which is critical for applications in biomedical components. The mechanical tests and SEM analysis indicated that PMMA/SrBHA composites could be used for replacement joints and orthopedic implants.

You might also be interested in these eBooks

Info:

Pages:

33-43

Citation:

Online since:

July 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M.R. Senra, M.d.F.V. Marques, Synthetic polymeric materials for bone replacement, J. Composites Sci. 4(4) (2020) 191.

Google Scholar

[2] K.T. Chu, Y. Oshida, E.B. Hancock, M.J. Kowolik, T. Barco, S.L. Zunt, Hydroxyapatite/PMMA composites as bone cements, Biomed. Mater. Eng. 14(1) (2004) 87–105.

Google Scholar

[3] U. Dubey, S. Kesarwani, P. Kyratsis, R.K. Verma, Development of modified polymethyl methacrylate and hydroxyapatite (PMMA/HA) biomaterial composite for orthopaedic products, in: P. Kyratsis, N. Efkolidis, J.P. Davim (Eds.), Advances in Product Design Engineering, Springer, Cham. 2022, p.159–178.

DOI: 10.1007/978-3-030-98124-2_7

Google Scholar

[4] S. Aghyarian, L.C. Rodriguez, J. Chari, E. Bentley, V. Kosmopoulos, I.H. Lieberman, D.C. Rodrigues, Characterization of a new composite PMMA-HA/Brushite bone cement for spinal augmentation, J. Biomater. Appl. 29(5) (2014) 688–698.

DOI: 10.1177/0885328214544770

Google Scholar

[5] M. Jäger, A. Wilke, Comprehensive biocompatibility testing of a new PMMA-HA bone cement versus conventional PMMA cement in vitro, J. Biomater. Sci. Polym. Ed. 14(11) (2003) 1283–1298.

DOI: 10.1163/156856203322553491

Google Scholar

[6] H. Shi, Z. Zhou, W. Li, Y. Fan, Z. Li, J. Wei, Hydroxyapatite based materials for bone tissue engineering: A brief and comprehensive introduction, Cryst. 11(2) (2021) 149.

DOI: 10.3390/cryst11020149

Google Scholar

[7] R. Kumar, S. Mohanty, Hydroxyapatite: a versatile bioceramic for tissue engineering application, J. Inorg. Organomet. Polym. Mater. 32 (2022) 4461–4477.

DOI: 10.1007/s10904-022-02454-2

Google Scholar

[8] S. Lara-Ochoa, W. Ortega-Lara, C.E. Guerrero-Beltrán, Hydroxyapatite nanoparticles in drug delivery: physicochemistry and applications, Pharm. 13(10) (2021) 1642.

DOI: 10.3390/pharmaceutics13101642

Google Scholar

[9] K.J. Moreno, J.S. García-Miranda, C. Hernández-Navarro, F. Ruiz-Guillén, L.D. Aguilera-Camacho, R. Lesso, Preparation and performance evaluation of PMMA/HA nanocomposite as bulk material, J. Composite Mater. 49(11) (2015) 1345–1353.

DOI: 10.1177/0021998314533713

Google Scholar

[10] S.M. Zebarjad, S.A. Sajjadi, T.E. Sdrabadi, A.Yaghmaei, B. Naderi, A study on mechanical properties of PMMA/hydroxyapatite nanocomposite, Engineering, 3 (2011) 795–801.

DOI: 10.4236/eng.2011.38096

Google Scholar

[11] W.L. Tham, W.S. Chow, Z.A. Mohd Ishak, Flexural and morphological properties of poly (methyl methacrylate)/hydroxyapatite composites: effects of planetary ball mill grinding time, J. Reinf. Plast. Composites, 29(13) (2010) 2065–2075.

DOI: 10.1177/0731684409344899

Google Scholar

[12] M. Wang, R. Joseph, W. Bonfield, Hydroxyapatite-polyethylene composites for bone substitution: effects of ceramic particle size and morphology, Biomater. 19(24) (1998) 2357–2366.

DOI: 10.1016/s0142-9612(98)00154-9

Google Scholar

[13] Z. Liu, Y. Tang, T. Kang, M. Rao, K. Li, Q. Wang, C. Quan, C. Zhang, Q. Jiang, H. Shen, Synergistic effect of HA and BMP-2 mimicking peptide on the bioactivity of HA/PMMA bone cement, Colloids Surf. B Biointerfaces, 131 (2015) 39–46.

DOI: 10.1016/j.colsurfb.2015.04.032

Google Scholar

[14] X. Sun, Z. Wu, D. He, K. Shen, X. Liu, H. Li, W. Jin, Bioactive injectable polymethylmethacrylate/silicate bioceramic hybrid cements for percutaneous vertebroplasty and kyphoplasty, J. Mech. Behav. Biomed. Mater. 96 (2019) 125–135.

DOI: 10.1016/j.jmbbm.2019.04.044

Google Scholar

[15] Z.-C. Xing, S.-J. Han, Y.-S. Shin, T.-H. Koo, S. Moon, Y. Jeong, I.-K. Kang, Enhanced osteoblast responses to poly (methyl methacrylate)/hydroxyapatite electrospun nanocomposites for bone tissue engineering, J. Biomater. Sci. Polymer Ed. 24(1) (2013) 61–76.

DOI: 10.1163/156856212x623526

Google Scholar

[16] Q. Hu, H.B. Liu, W.J. Weng, K. Cheng, C.L. Song, P.Y. Du, G.L. Zhao, G. Shen, J.X. Wang, G.R. Han, Emulsion technique preparation of Nano-HA/PMMA composites and in vitro evaluation, in: Key Engineering Materials, Trans. Tech. Publ. 2006.

Google Scholar

[17] A.T. Cucuruz, E. Andronescu, A. Ficai, A. Ilie, F. Iordache, Synthesis and characterization of new composite materials based on poly (methacrylic acid) and hydroxyapatite with applications in dentistry, Int, J. Pharm. 510(2) (2016) 516–523.

DOI: 10.1016/j.ijpharm.2016.01.061

Google Scholar

[18] S.K. Acharya, P. Mishra, S.K. Mehar, Effect of surface treatment on the mechanical properties of bagasse fiber reinforced polymer composite, BioResour. 6(3) (2011) 3155–3165.

DOI: 10.15376/biores.6.3.3155-3165

Google Scholar

[19] Y. Jiang, Z. Yuan, J. Huang, Substituted hydroxyapatite: a recent development, Mater. Technol. 35(11–12) (2020) 785–796.

Google Scholar

[20] I. Ullah, A. Gloria, W. Zhang, M.W. Ullah, B. Wu, W. Li, M. Domingos, X. Zhang, Synthesis and characterization of sintered Sr/Fe-modified hydroxyapatite bioceramics for bone tissue engineering applications, ACS Biomater. Sci. Eng. 6(1) (2019) 375–388.

DOI: 10.1021/acsbiomaterials.9b01666

Google Scholar

[21] A. Ressler, A. Žužić, I. Ivanišević, N. Kamboj, H. Ivanković, Ionic substituted hydroxyapatite for bone regeneration applications: A review, Open Ceramics 6 (2021) 100122.

DOI: 10.1016/j.oceram.2021.100122

Google Scholar

[22] B. Kołodziejska, N. Stępień, J. Kolmas, The influence of strontium on bone tissue metabolism and its application in osteoporosis treatment, Int. J. Mol. Sci. 22(12) (2021) 6564.

DOI: 10.3390/ijms22126564

Google Scholar

[23] J. Kolmas, F. Velard, A. Jaguszewska, F. Lemaire, H. Kerdjoudj, S.C. Gangloff, A. Kaflak, Substitution of strontium and boron into hydroxyapatite crystals: Effect on physicochemical properties and biocompatibility with human Wharton-Jelly stem cells, Mater. Sci. Eng. C 79 (2017) 638–646.

DOI: 10.1016/j.msec.2017.05.066

Google Scholar

[24] E. Tunçay, T.T. Demirtaş, M. Gümüşderelioğlu, Microwave-induced production of boron-doped HAp (B-HAp) and B-HAp coated composite scaffolds, J. Trace Elem. Med. Biol. 40 (2017) 72–81.

DOI: 10.1016/j.jtemb.2016.12.005

Google Scholar

[25] B. Yılmaz, Z. Evis, Boron-substituted bioceramics: A review, J. Boron 1(1) (2016) 6–14.

Google Scholar

[26] E.Ç. Dede, P. Korkusuz, E. Bilgiç, M.A. Çetinkaya, F. Korkusuz, Boron nano-hydroxyapatite composite increases the bone regeneration of ovariectomized rabbit femurs, Bio. Trace Elem. Res. 200 (2022) 183–196.

DOI: 10.1007/s12011-021-02626-0

Google Scholar

[27] G.-I. Kontogianni, A.F. Bonatti, C. De Maria, R. Naseem, P. Melo, C. Coelho, G. Vozzi, K. Dalgarno, P. Quadros, C. Vitale-Brovarone, M. Chatzinikolaidou, Promotion of in vitro osteogenic activity by melt extrusion-based plla/pcl/phbv scaffolds enriched with nano-hydroxyapatite and strontium substituted nano-hydroxyapatite, Polym. 15(4) (2023) 1052.

DOI: 10.3390/polym15041052

Google Scholar

[28] R. Ternane, M.Th. Cohen-Adad, G. Panczer, C. Goutaudier, N. Kbir-Ariguib, M. Trabelsi-Ayedi, P. Florian, D. Massiot, Introduction of boron in hydroxyapatite: synthesis and structural characterization, J. Alloys Compd. 333(1–2) (2002) 62–71.

DOI: 10.1016/s0925-8388(01)01558-4

Google Scholar

[29] I. Cacciotti, Multisubstituted hydroxyapatite powders and coatings: The influence of the codoping on the hydroxyapatite performances, Int. J. Appl. Ceramic Technol. 16(5) (2019) 1864–1884.

DOI: 10.1111/ijac.13229

Google Scholar

[30] A. Shirazi, New insights into the role of Al2O3 nano-supplements in mechanical performance of PMMA and PMMA/HA bone cements using nanoindentation and nanoscratch measurements, Mater. Technol. Adv. Perform. Mater. 36(4) (2021) 212–220.

DOI: 10.1080/10667857.2020.1741939

Google Scholar

[31] W.S. Chow, A.A. Aziz, Mechanical and thermal properties of hydroxyapatite filled poly (methyl methacrylate) composites, in: Proceedings of the Polymer Processing Society 24th Annual Meeting, Citeseer, 2008.

Google Scholar

[32] P. Cheang, K. Khor, Effect of particulate morphology on the tensile behaviour of polymer–hydroxyapatite composites, Mater. Sci. Eng. A 345(1–2) (2003) 47–54.

DOI: 10.1016/s0921-5093(02)00284-8

Google Scholar

[33] C. Capuccini, P. Torricelli, F. Sima, E. Boanini, C. Ristoscu, B. Bracci, G. Socol, M. Fini, I.N. Mihailescu, A. Bigi, Strontium-substituted hydroxyapatite coatings synthesized by pulsed-laser deposition: in vitro osteoblast and osteoclast response, Acta biomater. 4(6) (2008) 1885–1893.

DOI: 10.1016/j.actbio.2008.05.005

Google Scholar