[1]
N. Lall, N. Kishore, Are plants used for skin care in South Africa fully explored?, J. Ethnopharmacol. 153, (2014) 61-84.
DOI: 10.1016/j.jep.2014.02.021
Google Scholar
[2]
D.G. Selikane, T.P. Gumede, K. Shingange, T.D. Malevu, A Brief Overview on the Extraction of Cellulose from Medicinal Plants for Advanced Applications, Materials Science Forum. 1059 (2002) 81-85.
DOI: 10.4028/p-9hut2u
Google Scholar
[3]
G. Germishuizen, N. Meyer, Plants of southern Africa: an annotated checklist, National Botanical Institute. 14 (2003) 186. http://planet.botany.uwc.ac.za/NISL/Biodiversity/Attachments/Plants%20 of%20SA.pdf
Google Scholar
[4]
E.I. Okoye, A.O. Onyekwelli, F.O. Ohwoavworhua, O.O. Kunle, Comparative study of some mechanical and release properties of paracetamol tablets formulated with cashew tree gum, povidone and gelatin as binders, Afr. J. Biotechnol. 8 (2009) 3970-3973. http://www.academicjournals.org/AJB
Google Scholar
[5]
A. Ribeiro, M.M. Romeiras, J. Tavares, M.T. Faria, Ethnobotanical survey in Canhane village, district of Massingir, Mozambique: medicinal plants and traditional knowledge, J. Ethnobiol. Ethnomed. 6, (2010) 33.
DOI: 10.1186/1746-4269-6-33
Google Scholar
[6]
M. Shahid, A. Shahzad, A. Malik, A. Sahai, (Eds.). Recent trends in biotechnology and therapeutic applications of medicinal plants, Dordrecht: Springer. 1 (2013) 93-107.
DOI: 10.1007/978-94-007-6603-7
Google Scholar
[7]
G. Orive, R.M. Hernandez, A.R Gascón, A. Domı́nguez-Gil, J.L. Pedraz, Drug delivery in biotechnology: present and future, Current opinion in biotechnology. 14 (2003) 659-664.
DOI: 10.1016/j.copbio.2003.10.007
Google Scholar
[8]
C.G. Siontorou, F.A. Batzias, Innovation in biotechnology: Moving from academic research to product development—The case of biosensors, Crit. Rev. Biotechnol. 30 (2010) 79-98.
DOI: 10.3109/07388550903427298
Google Scholar
[9]
L. Lin, R. Yan, Y. Liu, W. Jiang, In-depth investigation of enzymatic hydrolysis of biomass wastes based on three major components: cellulose, hemicellulose and lignin, Bioresour. Technol. 101 (2010) 8217-8223.
DOI: 10.1016/j.biortech.2010.05.084
Google Scholar
[10]
M. Börjesson, G. Westman, Crystalline Nanocellulose- Preparation, Modification, and Properties, Cellulose - Fundamental Aspects and Current Trends. (2015) 159-191.
DOI: 10.5772/61899
Google Scholar
[11]
C.J. Chirayil, J. Joy, L. Mathew, M. Mozetic, J. Koetz, S. Thomas, Isolation and characterization of cellulose nanofibrils from Helicteres isora plant, Industrial Crops and Products. 59 (2014) 27–34.
DOI: 10.1016/j.indcrop.2014.04.020
Google Scholar
[12]
D.K.P.K. Lavanya, P.K. Kulkarni, M. Dixit, P.K. Raavi, L.N.V. Krishna, Sources of cellulose and their applications—A review, International Journal of Drug Formulation and Research. 2 (2018) 19-38. http://www.ordonearresearchlibrary.org/
Google Scholar
[13]
P. Chocholata, V. Kulda, V. Babuska, Fabrication of Scaffolds for Bone-Tissue Regeneration, Materials. 12 (2019) 568.
DOI: 10.3390/ma12040568
Google Scholar
[14]
R. Dwivedi, S. Kumar, R. Pandey, A. Mahajan, D. Nandana, D.S. Katti, D. Mehrotraa, Polycaprolactone as biomaterial for bone scaffolds: Review of literature, J. Oral Biol. Craniofac. Res. 10 (2020) 381–388.
DOI: 10.1016/j.jobcr.2019.10.003
Google Scholar
[15]
Y. Habibi, L.A. Lucia, O.J. Rojas, Cellulose Nanocrystals: Chemistry, Self-Assembly, and Applications, Chem. Rev. 110 (2010) 3479–3500.
DOI: 10.1021/cr900339w
Google Scholar
[16]
J. Rojas, M. Bedoya, Y. Ciro, Current Trends in the Production of Cellulose Nanoparticles and Nanocomposites for Biomedical Applications, Cellulose - Fundamental Aspects and Current Trends. (2015) 193-228
DOI: 10.5772/61334
Google Scholar
[17]
A. Steinbuchel, Non-biodegradable biopolymers from renewable resources: perspectives and impacts, Current Opinion in Biotechnology. 16 (2005) 607–613.
DOI: 10.1016/j.copbio.2005.10.011
Google Scholar
[18]
S. Mohan, O.S. Oluwafemi, N. Kalarikkal, S. Thomas, S.P. Songca, Biopolymers–application in nanoscience and nanotechnology, Recent advances in biopolymers. 1 (2016) 47-66.
DOI: 10.5772/62225
Google Scholar
[19]
L. Meng, F. Xie, B. Zhang, D.K. Wang, L. Yu, L, Natural biopolymer alloys with superior mechanical properties, ACS Sustain. Chem. Eng. 7 (2018) 2792-2802.
DOI: 10.1021/acssuschemeng.8b06009
Google Scholar
[20]
M.I. Sabir, X. Xu, L. Li, A review on biodegradable polymeric materials for bone tissue engineering applications, J. Mater. Sci. 44 (2009) 5713–5724.
DOI: 10.1007/s10853-009-3770-7
Google Scholar
[21]
Z. Sheikh, S. Najeeb, Z. Khurshid, V. Verma, H. Rashid, M. Glogauer, Biodegradable materials for bone repair and tissue engineering applications, Materials. 8 (2015) 5744-5794.
DOI: 10.3390/ma8095273
Google Scholar
[22]
T. Mohan, S. Hribernik, R. Kargl, K. Stana-Kleinschek, Nanocellulosic Materials in Tissue Engineering Applications, Cellulose - Fundamental Aspects and Current Trends. (2015) 251-273.
DOI: 10.5772/61344
Google Scholar
[23]
T.P. Gumede, A.S. Luyt, A.J. Muller, Review on PCL, PBS, and PCL/PBS blends containing carbon nanotubes, Express polym. lett. 12 (2018) 505–529.
DOI: 10.3144/expresspolymlett.2018.43
Google Scholar
[24]
H. Qu, H. Fu, Z. Han, Y. Sun, Biomaterials for bone tissue engineering scaffolds: a review, Journal of RSC Advances. 9 (2019) 26252–26262
DOI: 10.1039/C9RA05214C
Google Scholar
[25]
O. Paquet, M. Krouit, J. Bras, W. Thielemans, M.N. Belgacem, Surface modification of cellulose by PCL grafts, Acta Mater. 58 (2010) 792–801. http://dx.doi.org/10.1016/j.actamat. 2009.09.057
DOI: 10.1016/j.actamat.2009.09.057
Google Scholar
[26]
O.A. Leistner, (ed.), Seed plants of southern Africa: families and genera, Strelitzia 10, National Botanical Institute, Pretoria (2000). https://www.abebooks.com/9781919795515/Seed-plants-southern-Africa-Families-1919795510/plp
Google Scholar
[27]
T.Erdem, G.A. Oya, Isolation of cellulose and hemicellulose by using alkaline peroxide treatment at room temperature from wasted fall leaves, NESciences. 2 (2017) 100-110.
DOI: 10.5053/ejen.2015.3.2
Google Scholar
[28]
F.N. Alaribe, M.J. Maepa, N. Mkhumbeni, S.C.M.K. Motaung, Possible roles of Eucomis autumnalis in bone and cartilage regeneration: A review, Trop. j. pharm. Res. 17(4) (2018) 741–747.
DOI: 10.4314/tjpr.v17i4.25
Google Scholar
[29]
N. Bamola, P. Verma, C. Negi, A review on traditional medicinal plants, Institute of Training and Research, India. 4(1) (2018) 1550–1556
DOI: 10.21276/ijlssr.2018.4.1.7
Google Scholar
[30]
L. Cheesman, J.F. Finnie, J. Van Staden, J, Eucomis zambesiaca baker: Factors affecting in vitro bulblet induction, S. Afr. J. Bot. 76(1) (2010) 543– 549.
DOI: 10.1016/j.sajb.2010.04.004
Google Scholar
[31]
M.G. Kulkarni, S.G. Sparg, J. Van Standen, Dark conditioning, cold stratification and a smoke-derived compound enhance the germination of Eucomis autumnalis subsp. autumnalis seeds, S. Afr. J. Bot. 72(1) (2006) 157– 162 (2006).
DOI: 10.1016/j.sajb.2005.06.006
Google Scholar
[32]
J. Desmaisons, E. Boutonnet, M. Rueff, A. Dufresne, J. Bras, A new quality index for benchmarking of different cellulose nanofibrils, Carbohydr. Polym. 174 (2017) 318–329.
DOI: 10.1016/j.carbpol.2017.06.032
Google Scholar
[33]
A. Khenblouche, D. Bechki, M. Gouamid, K. Charradi, L. Segni, M. Hadjadj, S. Boughali, Extraction and characterization of cellulose microfibers from Retama raetam stems, Polímeros. 29 (1) (2019) 1–8.
DOI: 10.1590/0104-1428.05218
Google Scholar
[34]
T.S. Sikhosana, T.P. Gumede, N.J. Malebo, A.O. Ogundeji, B. Motloung, Medicinal plants as a cellulose source for the fabrication of poly(lactic acid) composites: A mini-review, Polymers from Renewable Resources. 14 (2023) 44-57.
DOI: 10.1177/20412479221146249
Google Scholar
[35]
A. Benkaddour, K. Jradi, S. Robert, C. Daneault. Grafting of Polycaprolactone on Oxidized Nanocelluloses by Click Chemistry, Nanomaterials. 3 (2013) 141-157.
DOI: 10.3390/nano3010141
Google Scholar
[36]
J.I. Mora´n, V.A. Alvarez, V.P. Cyras, A. Va´zquez, Extraction of cellulose and preparation of nanocellulose from sisal fibers, Cellulose. 15 (2008) 149–159.
DOI: 10.1007/s10570-007-9145-9
Google Scholar
[37]
A. Hivechi, S. Hajir Bahrami, R.A. Siegel, P.B. Milan, M. Amoupour, In vitro and in vivo studies of biaxially electrospun poly(caprolactone)/gelatin nanofibers, reinforced with cellulose nanocrystals, for wound healing applications, Cellulose. (2020).
DOI: 10.1007/s10570-020-03106-9
Google Scholar
[38]
E.M. Inácio, D.H.S. Souza, M.L. Dias, Thermal and Crystallization Behavior of PLA/PLLA-Grafting Cellulose Nanocrystal, Materials Sciences and Applications. 11 (2020) 44-57.
DOI: 10.4236/msa.2020.111004
Google Scholar
[39]
A. Huang, Y. Jiang, B. Napiwocki, H. Mi, X. Xiangfang Peng, L. Turng, Fabrication of poly(3-caprolactone) tissue engineering scaffolds with fibrillated and interconnected pores utilizing microcellular injection molding and polymer leaching†, RSC Advances. 7 (2017) 43432-43444.
DOI: 10.1039/c7ra06987a
Google Scholar
[40]
Y. Nashchekina, A. Chabina, A. Nashchekin, N. Mikhailova, Polycaprolactone Films Modified by L-Arginine for Mesenchymal Stem Cell Cultivation, Polymers. 12 (2020) 1042.
DOI: 10.3390/polym12051042
Google Scholar
[41]
C. Kahl, J. Bagnucki, J. Zarges, Demonstration of Hybrid Effect in Single Fiber Pull-Out Tests for Glass/Cellulose-Reinforced Polypropylene with Different Fiber–Matrix Adhesions, Polymers. 14 (2022) 2517.
DOI: 10.3390/polym14132517
Google Scholar
[42]
A. Kiziltas, B. Nazari, E.E. Kiziltas, D.J.S. Gardner, Y. Han, T.D. Rushing, Cellulose NANOFIBER-polyethylene nanocomposites modified by polyvinyl alcohol, J. Appl. Polym. Sci. 133 (2016) 42933.
DOI: 10.1002/app.42933
Google Scholar
[43]
K. Li, D. Mcgrady, X. Zhao, D. Ker, H. Tekinalp, X. He, J. Qu, T. Aytug, E. Cakmak, J. Phipps, S. Ireland, V. Kunc, S. Ozcan, Surface-modified and oven-dried microfibrillated cellulose reinforced biocomposites: Cellulose network enabled high performance, Carbohydr. Polym. 256 (2021) 117525.
DOI: 10.1016/j.carbpol.2020.117525
Google Scholar
[44]
Y. Li, C. Chen, J. Xu, Z. Zhang, B. Yuan, X. Huang, Improved mechanical properties of carbon nanotubes-coated flax fiber reinforced composites, Mater. Sci. 50 (2014) 1117-1128.
DOI: 10.1007/s10853-014-8668-3
Google Scholar
[45]
R. Auta, G. Adamus, M. Kwiecien, I. Radecka, P. Hooley, Production and characterization of bacterial cellulose before and after enzymatic hydrolysis, Academic Journals. 16 (2017) 470-482
Google Scholar
[46]
T.T. Su, H. Jiang, H. Gong, Thermal Stabilities and the Thermal Degradation Kinetics of Poly(ε-Caprolactone), Polymer-Plastics Technology and Engineering. 47 (2008) 398-403.
DOI: 10.1080/03602550801897695
Google Scholar
[47]
R. Pucciariello, L. Tammaro, V. Villani, V. Vittoria, New Nanohybrids of Poly(e-caprolactone) and a Modified Mg/Al Hydrotalcite: Mechanical and Thermal Properties, J. Polym. Sci: Part B: Polymer Physics. 45 (2007) 945–954.
DOI: 10.1002/polb.21106
Google Scholar
[48]
J.P. Mofokeng, A.S. Luyt, T. Tábi, J. Kovács, Comparison of injection moulded, natural fibre-reinforced composites with PP and PLA as matrices, J. Thermoplast. Compos. Mater. 25(8) (2011) 927–948.
DOI: 10.1177/0892705711423291
Google Scholar
[49]
J.O. Zoppe, M.S. Peresin, Y. Habibi, R.A. Venditti, O.J. Rojas, Reinforcing poly (ε-caprolactone) nanofibers with cellulose nanocrystals, ACS applied materials & interfaces. 1 (2009) 1996-2004.
DOI: 10.1021/am9003705
Google Scholar
[50]
S.T. Sikhosana, T.P. Gumede, N.J. Malebo, A.O. Ogundeji, B. Motloung, The influence of cellulose content on the morphology, thermal, and mechanical properties of poly(lactic acid)/Eucomis autumnalis cellulose biocomposites, Polym Eng Sci. (2023) 1–12.
DOI: 10.1002/pen.26293
Google Scholar
[51]
K. Katsumata, T. Saito, F. Yu, N. Nakamura, Y. Inoue, The toughening effect of a small amount of poly(ɛ-caprolactone) on the mechanical properties of the poly(3-hydroxybutyrate-co-3-hydroxyhexanoate)/PCL blend, Polym. J. 43 (2011) 484–492.
DOI: 10.1038/pj.2011.12
Google Scholar
[52]
M. Hu, C. Deng, X. Gu, Q. Fu, J. Zhang, Manipulating the Strength–Toughness Balance of Poly(l-lactide) (PLLA) via Introducing Ductile Poly(ε-caprolactone) (PCL) and Strong Shear Flow, Ind. Eng. Chem. Res. 59 (2019) 1000–1009.
DOI: 10.1021/acs.iecr.9b05380
Google Scholar
[53]
H.B. Hashim, N.A.A.B. Emran, T. Isono, S. Katsuhara, H. Ninoyu, T. Matsushima, T. Yamamoto, R. Borsali, T. Satoh, K. Tajima, Improving the mechanical properties of polycaprolactone using functionalized nanofibrillated bacterial cellulose with high dispersibility and long fiber length as a reinforcement material, Composites Part A. 158 (2022) 106978.
DOI: 10.1016/j.compositesa.2022.106978
Google Scholar
[54]
A.N. Nakagaito, H. Yano, The effect of fiber content on the mechanical and thermal expansion properties of biocomposites based on microfibrillated cellulose, Cellulose. 15 (2008) 555–559.
DOI: 10.1007/s10570-008-9212-x
Google Scholar