Characterization of Polycaprolactone/Eucomis autumnalis Cellulose Composite: Structural, Thermal, and Mechanical Analysis

Article Preview

Abstract:

This study presents a comprehensive investigation into the preparation and characterization of PCL/EA cellulose composites. The Fourier-transform infrared (FTIR) spectroscopy results confirm the successful composite fabrication, indicating the absence of chemical reactions during melt-compounding. Scanning electron microscopy (SEM) revealed distinct morphologies, with PCL forming a continuous phase and EA cellulose exhibiting a fibrous network. Despite successful embedding of EA cellulose fibers in the composite, fractured surfaces indicated poor interfacial interaction, potentially leading to fiber pull out. Thermogravimetric analysis (TGA) revealed enhanced thermal stability in the composites, while differential scanning calorimetry (DSC) indicated minimal impact on PCL melting behavior. X-ray diffraction analysis (XRD) further demonstrated enhanced crystallinity in the composites, highlighting increased order in PCL crystals. Mechanical testing revealed a modest increase in stiffness attributed to the rigid cellulose fibers. However, a decrease in yield strength, tensile strength, and elongation at break suggested reduced ductility and inferior mechanical properties, consistent with poor interfacial adhesion observed in SEM. Overall, this study contributes valuable insights into the structural, thermal, and mechanical characteristics of PCL/EA cellulose composites, offering a foundation for potential applications in various fields.

You might also be interested in these eBooks

Info:

Pages:

45-58

Citation:

Online since:

July 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] N. Lall, N. Kishore, Are plants used for skin care in South Africa fully explored?, J. Ethnopharmacol. 153, (2014) 61-84.

DOI: 10.1016/j.jep.2014.02.021

Google Scholar

[2] D.G. Selikane, T.P. Gumede, K. Shingange, T.D. Malevu, A Brief Overview on the Extraction of Cellulose from Medicinal Plants for Advanced Applications, Materials Science Forum. 1059 (2002) 81-85.

DOI: 10.4028/p-9hut2u

Google Scholar

[3] G. Germishuizen, N. Meyer, Plants of southern Africa: an annotated checklist, National Botanical Institute. 14 (2003) 186. http://planet.botany.uwc.ac.za/NISL/Biodiversity/Attachments/Plants%20 of%20SA.pdf

Google Scholar

[4] E.I. Okoye, A.O. Onyekwelli, F.O. Ohwoavworhua, O.O. Kunle, Comparative study of some mechanical and release properties of paracetamol tablets formulated with cashew tree gum, povidone and gelatin as binders, Afr. J. Biotechnol. 8 (2009) 3970-3973. http://www.academicjournals.org/AJB

Google Scholar

[5] A. Ribeiro, M.M. Romeiras, J. Tavares, M.T. Faria, Ethnobotanical survey in Canhane village, district of Massingir, Mozambique: medicinal plants and traditional knowledge, J. Ethnobiol. Ethnomed. 6, (2010) 33.

DOI: 10.1186/1746-4269-6-33

Google Scholar

[6] M. Shahid, A. Shahzad, A. Malik, A. Sahai, (Eds.). Recent trends in biotechnology and therapeutic applications of medicinal plants, Dordrecht: Springer. 1 (2013) 93-107.

DOI: 10.1007/978-94-007-6603-7

Google Scholar

[7] G. Orive, R.M. Hernandez, A.R Gascón, A. Domı́nguez-Gil, J.L. Pedraz, Drug delivery in biotechnology: present and future, Current opinion in biotechnology. 14 (2003) 659-664.

DOI: 10.1016/j.copbio.2003.10.007

Google Scholar

[8] C.G. Siontorou, F.A. Batzias, Innovation in biotechnology: Moving from academic research to product development—The case of biosensors, Crit. Rev. Biotechnol. 30 (2010) 79-98.

DOI: 10.3109/07388550903427298

Google Scholar

[9] L. Lin, R. Yan, Y. Liu, W. Jiang, In-depth investigation of enzymatic hydrolysis of biomass wastes based on three major components: cellulose, hemicellulose and lignin, Bioresour. Technol. 101 (2010) 8217-8223.

DOI: 10.1016/j.biortech.2010.05.084

Google Scholar

[10] M. Börjesson, G. Westman, Crystalline Nanocellulose- Preparation, Modification, and Properties, Cellulose - Fundamental Aspects and Current Trends. (2015) 159-191.

DOI: 10.5772/61899

Google Scholar

[11] C.J. Chirayil, J. Joy, L. Mathew, M. Mozetic, J. Koetz, S. Thomas, Isolation and characterization of cellulose nanofibrils from Helicteres isora plant, Industrial Crops and Products. 59 (2014) 27–34.

DOI: 10.1016/j.indcrop.2014.04.020

Google Scholar

[12] D.K.P.K. Lavanya, P.K. Kulkarni, M. Dixit, P.K. Raavi, L.N.V. Krishna, Sources of cellulose and their applications—A review, International Journal of Drug Formulation and Research. 2 (2018) 19-38. http://www.ordonearresearchlibrary.org/

Google Scholar

[13] P. Chocholata, V. Kulda, V. Babuska, Fabrication of Scaffolds for Bone-Tissue Regeneration, Materials. 12 (2019) 568.

DOI: 10.3390/ma12040568

Google Scholar

[14] R. Dwivedi, S. Kumar, R. Pandey, A. Mahajan, D. Nandana, D.S. Katti, D. Mehrotraa, Polycaprolactone as biomaterial for bone scaffolds: Review of literature, J. Oral Biol. Craniofac. Res. 10 (2020) 381–388.

DOI: 10.1016/j.jobcr.2019.10.003

Google Scholar

[15] Y. Habibi, L.A. Lucia, O.J. Rojas, Cellulose Nanocrystals: Chemistry, Self-Assembly, and Applications, Chem. Rev. 110 (2010) 3479–3500.

DOI: 10.1021/cr900339w

Google Scholar

[16] J. Rojas, M. Bedoya, Y. Ciro, Current Trends in the Production of Cellulose Nanoparticles and Nanocomposites for Biomedical Applications, Cellulose - Fundamental Aspects and Current Trends. (2015) 193-228

DOI: 10.5772/61334

Google Scholar

[17] A. Steinbuchel, Non-biodegradable biopolymers from renewable resources: perspectives and impacts, Current Opinion in Biotechnology. 16 (2005) 607–613.

DOI: 10.1016/j.copbio.2005.10.011

Google Scholar

[18] S. Mohan, O.S. Oluwafemi, N. Kalarikkal, S. Thomas, S.P. Songca, Biopolymers–application in nanoscience and nanotechnology, Recent advances in biopolymers. 1 (2016) 47-66.

DOI: 10.5772/62225

Google Scholar

[19] L. Meng, F. Xie, B. Zhang, D.K. Wang, L. Yu, L, Natural biopolymer alloys with superior mechanical properties, ACS Sustain. Chem. Eng. 7 (2018) 2792-2802.

DOI: 10.1021/acssuschemeng.8b06009

Google Scholar

[20] M.I. Sabir, X. Xu, L. Li, A review on biodegradable polymeric materials for bone tissue engineering applications, J. Mater. Sci. 44 (2009) 5713–5724.

DOI: 10.1007/s10853-009-3770-7

Google Scholar

[21] Z. Sheikh, S. Najeeb, Z. Khurshid, V. Verma, H. Rashid, M. Glogauer, Biodegradable materials for bone repair and tissue engineering applications, Materials. 8 (2015) 5744-5794.

DOI: 10.3390/ma8095273

Google Scholar

[22] T. Mohan, S. Hribernik, R. Kargl, K. Stana-Kleinschek, Nanocellulosic Materials in Tissue Engineering Applications, Cellulose - Fundamental Aspects and Current Trends. (2015) 251-273.

DOI: 10.5772/61344

Google Scholar

[23] T.P. Gumede, A.S. Luyt, A.J. Muller, Review on PCL, PBS, and PCL/PBS blends containing carbon nanotubes, Express polym. lett. 12 (2018) 505–529.

DOI: 10.3144/expresspolymlett.2018.43

Google Scholar

[24] H. Qu, H. Fu, Z. Han, Y. Sun, Biomaterials for bone tissue engineering scaffolds: a review, Journal of RSC Advances. 9 (2019) 26252–26262

DOI: 10.1039/C9RA05214C

Google Scholar

[25] O. Paquet, M. Krouit, J. Bras, W. Thielemans, M.N. Belgacem, Surface modification of cellulose by PCL grafts, Acta Mater. 58 (2010) 792–801. http://dx.doi.org/10.1016/j.actamat. 2009.09.057

DOI: 10.1016/j.actamat.2009.09.057

Google Scholar

[26] O.A. Leistner, (ed.), Seed plants of southern Africa: families and genera, Strelitzia 10, National Botanical Institute, Pretoria (2000). https://www.abebooks.com/9781919795515/Seed-plants-southern-Africa-Families-1919795510/plp

Google Scholar

[27] T.Erdem, G.A. Oya, Isolation of cellulose and hemicellulose by using alkaline peroxide treatment at room temperature from wasted fall leaves, NESciences. 2 (2017) 100-110.

DOI: 10.5053/ejen.2015.3.2

Google Scholar

[28] F.N. Alaribe, M.J. Maepa, N. Mkhumbeni, S.C.M.K. Motaung, Possible roles of Eucomis autumnalis in bone and cartilage regeneration: A review, Trop. j. pharm. Res. 17(4) (2018) 741–747.

DOI: 10.4314/tjpr.v17i4.25

Google Scholar

[29] N. Bamola, P. Verma, C. Negi, A review on traditional medicinal plants, Institute of Training and Research, India. 4(1) (2018) 1550–1556

DOI: 10.21276/ijlssr.2018.4.1.7

Google Scholar

[30] L. Cheesman, J.F. Finnie, J. Van Staden, J, Eucomis zambesiaca baker: Factors affecting in vitro bulblet induction, S. Afr. J. Bot. 76(1) (2010) 543– 549.

DOI: 10.1016/j.sajb.2010.04.004

Google Scholar

[31] M.G. Kulkarni, S.G. Sparg, J. Van Standen, Dark conditioning, cold stratification and a smoke-derived compound enhance the germination of Eucomis autumnalis subsp. autumnalis seeds, S. Afr. J. Bot. 72(1) (2006) 157– 162 (2006).

DOI: 10.1016/j.sajb.2005.06.006

Google Scholar

[32] J. Desmaisons, E. Boutonnet, M. Rueff, A. Dufresne, J. Bras, A new quality index for benchmarking of different cellulose nanofibrils, Carbohydr. Polym. 174 (2017) 318–329.

DOI: 10.1016/j.carbpol.2017.06.032

Google Scholar

[33] A. Khenblouche, D. Bechki, M. Gouamid, K. Charradi, L. Segni, M. Hadjadj, S. Boughali, Extraction and characterization of cellulose microfibers from Retama raetam stems, Polímeros. 29 (1) (2019) 1–8.

DOI: 10.1590/0104-1428.05218

Google Scholar

[34] T.S. Sikhosana, T.P. Gumede, N.J. Malebo, A.O. Ogundeji, B. Motloung, Medicinal plants as a cellulose source for the fabrication of poly(lactic acid) composites: A mini-review, Polymers from Renewable Resources. 14 (2023) 44-57.

DOI: 10.1177/20412479221146249

Google Scholar

[35] A. Benkaddour, K. Jradi, S. Robert, C. Daneault. Grafting of Polycaprolactone on Oxidized Nanocelluloses by Click Chemistry, Nanomaterials. 3 (2013) 141-157.

DOI: 10.3390/nano3010141

Google Scholar

[36] J.I. Mora´n, V.A. Alvarez, V.P. Cyras, A. Va´zquez, Extraction of cellulose and preparation of nanocellulose from sisal fibers, Cellulose. 15 (2008) 149–159.

DOI: 10.1007/s10570-007-9145-9

Google Scholar

[37] A. Hivechi, S. Hajir Bahrami, R.A. Siegel, P.B. Milan, M. Amoupour, In vitro and in vivo studies of biaxially electrospun poly(caprolactone)/gelatin nanofibers, reinforced with cellulose nanocrystals, for wound healing applications, Cellulose. (2020).

DOI: 10.1007/s10570-020-03106-9

Google Scholar

[38] E.M. Inácio, D.H.S. Souza, M.L. Dias, Thermal and Crystallization Behavior of PLA/PLLA-Grafting Cellulose Nanocrystal, Materials Sciences and Applications. 11 (2020) 44-57.

DOI: 10.4236/msa.2020.111004

Google Scholar

[39] A. Huang, Y. Jiang, B. Napiwocki, H. Mi, X. Xiangfang Peng, L. Turng, Fabrication of poly(3-caprolactone) tissue engineering scaffolds with fibrillated and interconnected pores utilizing microcellular injection molding and polymer leaching†, RSC Advances. 7 (2017) 43432-43444.

DOI: 10.1039/c7ra06987a

Google Scholar

[40] Y. Nashchekina, A. Chabina, A. Nashchekin, N. Mikhailova, Polycaprolactone Films Modified by L-Arginine for Mesenchymal Stem Cell Cultivation, Polymers. 12 (2020) 1042.

DOI: 10.3390/polym12051042

Google Scholar

[41] C. Kahl, J. Bagnucki, J. Zarges, Demonstration of Hybrid Effect in Single Fiber Pull-Out Tests for Glass/Cellulose-Reinforced Polypropylene with Different Fiber–Matrix Adhesions, Polymers. 14 (2022) 2517.

DOI: 10.3390/polym14132517

Google Scholar

[42] A. Kiziltas, B. Nazari, E.E. Kiziltas, D.J.S. Gardner, Y. Han, T.D. Rushing, Cellulose NANOFIBER-polyethylene nanocomposites modified by polyvinyl alcohol, J. Appl. Polym. Sci. 133 (2016) 42933.

DOI: 10.1002/app.42933

Google Scholar

[43] K. Li, D. Mcgrady, X. Zhao, D. Ker, H. Tekinalp, X. He, J. Qu, T. Aytug, E. Cakmak, J. Phipps, S. Ireland, V. Kunc, S. Ozcan, Surface-modified and oven-dried microfibrillated cellulose reinforced biocomposites: Cellulose network enabled high performance, Carbohydr. Polym. 256 (2021) 117525.

DOI: 10.1016/j.carbpol.2020.117525

Google Scholar

[44] Y. Li, C. Chen, J. Xu, Z. Zhang, B. Yuan, X. Huang, Improved mechanical properties of carbon nanotubes-coated flax fiber reinforced composites, Mater. Sci. 50 (2014) 1117-1128.

DOI: 10.1007/s10853-014-8668-3

Google Scholar

[45] R. Auta, G. Adamus, M. Kwiecien, I. Radecka, P. Hooley, Production and characterization of bacterial cellulose before and after enzymatic hydrolysis, Academic Journals. 16 (2017) 470-482

Google Scholar

[46] T.T. Su, H. Jiang, H. Gong, Thermal Stabilities and the Thermal Degradation Kinetics of Poly(ε-Caprolactone), Polymer-Plastics Technology and Engineering. 47 (2008) 398-403.

DOI: 10.1080/03602550801897695

Google Scholar

[47] R. Pucciariello, L. Tammaro, V. Villani, V. Vittoria, New Nanohybrids of Poly(e-caprolactone) and a Modified Mg/Al Hydrotalcite: Mechanical and Thermal Properties, J. Polym. Sci: Part B: Polymer Physics. 45 (2007) 945–954.

DOI: 10.1002/polb.21106

Google Scholar

[48] J.P. Mofokeng, A.S. Luyt, T. Tábi, J. Kovács, Comparison of injection moulded, natural fibre-reinforced composites with PP and PLA as matrices, J. Thermoplast. Compos. Mater. 25(8) (2011) 927–948.

DOI: 10.1177/0892705711423291

Google Scholar

[49] J.O. Zoppe, M.S. Peresin, Y. Habibi, R.A. Venditti, O.J. Rojas, Reinforcing poly (ε-caprolactone) nanofibers with cellulose nanocrystals, ACS applied materials & interfaces. 1 (2009) 1996-2004.

DOI: 10.1021/am9003705

Google Scholar

[50] S.T. Sikhosana, T.P. Gumede, N.J. Malebo, A.O. Ogundeji, B. Motloung, The influence of cellulose content on the morphology, thermal, and mechanical properties of poly(lactic acid)/Eucomis autumnalis cellulose biocomposites, Polym Eng Sci. (2023) 1–12.

DOI: 10.1002/pen.26293

Google Scholar

[51] K. Katsumata, T. Saito, F. Yu, N. Nakamura, Y. Inoue, The toughening effect of a small amount of poly(ɛ-caprolactone) on the mechanical properties of the poly(3-hydroxybutyrate-co-3-hydroxyhexanoate)/PCL blend, Polym. J. 43 (2011) 484–492.

DOI: 10.1038/pj.2011.12

Google Scholar

[52] M. Hu, C. Deng, X. Gu, Q. Fu, J. Zhang, Manipulating the Strength–Toughness Balance of Poly(l-lactide) (PLLA) via Introducing Ductile Poly(ε-caprolactone) (PCL) and Strong Shear Flow, Ind. Eng. Chem. Res. 59 (2019) 1000–1009.

DOI: 10.1021/acs.iecr.9b05380

Google Scholar

[53] H.B. Hashim, N.A.A.B. Emran, T. Isono, S. Katsuhara, H. Ninoyu, T. Matsushima, T. Yamamoto, R. Borsali, T. Satoh, K. Tajima, Improving the mechanical properties of polycaprolactone using functionalized nanofibrillated bacterial cellulose with high dispersibility and long fiber length as a reinforcement material, Composites Part A. 158 (2022) 106978.

DOI: 10.1016/j.compositesa.2022.106978

Google Scholar

[54] A.N. Nakagaito, H. Yano, The effect of fiber content on the mechanical and thermal expansion properties of biocomposites based on microfibrillated cellulose, Cellulose. 15 (2008) 555–559.

DOI: 10.1007/s10570-008-9212-x

Google Scholar