[1]
C. Doherty, E. Delahunt, B. Caulfield, J. Hertel, J. Ryan and C. Bleakley, The incidence and prevalence of ankle sprain injury: a systematic review and meta-analysis of prospective epidemiological studies, Sports medicine. 44 (2014) 123-140
DOI: 10.1007/s40279-013-0102-5
Google Scholar
[2]
D. T. Fong, Y. Hong, L. K. Chan, P. S. Yung and K. M. Chan, A systematic review on ankle injury and ankle sprain in sports, Sports Med. 37 (2007) 73-94
DOI: 10.2165/00007256-200737010-00006
Google Scholar
[3]
D. M. Swenson, E. E. Yard, S. K. Fields and R. Dawn Comstock, Patterns of recurrent injuries among US high school athletes, 2005-2008, The American journal of sports medicine. 37 (2009) 1586-1593
DOI: 10.1177/0363546509332500
Google Scholar
[4]
J. Hertel and R. O. Corbett, An updated model of chronic ankle instability, Journal of athletic training. 54 (2019) 572-588
DOI: 10.4085/1062-6050-344-18
Google Scholar
[5]
P. A. Gribble, C.M. Bleakley, B.M. Caulfield, C. L. Docherty, F. Fourchet, D. T.-P. Fong, J. Hertel, C.E. Hiller, T.W. Kaminski and P. O. McKeon, Evidence review for the 2016 International Ankle Consortium consensus statement on the prevalence, impact and long-term consequences of lateral ankle sprains, British journal of sports medicine. 50 (2016) 1496-1505
DOI: 10.1136/bjsports-2016-096189
Google Scholar
[6]
P. Yu, Q. Mei, L. Xiang, J. Fernandez and Y. Gu, Differences in the locomotion biomechanics and dynamic postural control between individuals with chronic ankle instability and copers: a systematic review, Sports Biomechanics. 21 (2022) 531-549
DOI: 10.1080/14763141.2021.1954237
Google Scholar
[7]
M. Freeman, M. Dean and I. Hanham, The etiology and prevention of functional instability of the foot, The Journal of Bone & Joint Surgery British Volume. 47 (1965) 678-685
DOI: 10.1302/0301-620x.47b4.678
Google Scholar
[8]
S. Kunugi, A. Masunari, N. Yoshida and S. Miyakawa, Postural stability and lower leg muscle activity during a diagonal single-leg landing differs in male collegiate soccer players with and without functional ankle instability, The Journal of Physical Fitness and Sports Medicine. 6 (2017) 257-265
DOI: 10.7600/jpfsm.6.257
Google Scholar
[9]
E. A. Wikstrom, M. D. Tillman, T. L. Chmielewski, J. H. Cauraugh and P. A. Borsa, Dynamic postural stability deficits in subjects with self-reported ankle instability, Medicine & Science in Sports & Exercise. 39 (2007) 397-402
DOI: 10.1249/mss.0b013e31802d3460
Google Scholar
[10]
C. J. Wright, B. L. Arnold and S. E. Ross, Altered kinematics and time to stabilization during drop-jump landings in individuals with or without functional ankle instability, Journal of athletic training. 51 (2016) 5-15
DOI: 10.4085/1062-6050-51.2.10
Google Scholar
[11]
C. N. Brown, J. Ko, A. B. Rosen and K. Hsieh, Individuals with both perceived ankle instability and mechanical laxity demonstrate dynamic postural stability deficits, Clinical biomechanics. 30 (2015) 1170-1174
DOI: 10.1016/j.clinbiomech.2015.08.008
Google Scholar
[12]
C. Eechaute, L. Leemans, M. De Mesmaeker, R. De Ridder, D. Beckwée, F. Struyf, F. Roosen, R. Buyl, K. Putman and P. Vaes, The predictive value of the multiple hop test for first-time noncontact lateral ankle sprains, J Sports Sci. 38 (2020) 86-93
DOI: 10.1080/02640414.2019.1682891
Google Scholar
[13]
C. Doherty, C. Bleakley, J. Hertel, B. Caulfield, J. Ryan and E. Delahunt, Lower extremity function during gait in participants with first time acute lateral ankle sprain compared to controls, Journal of Electromyography and Kinesiology. 25 (2015) 182-192
DOI: 10.1016/j.jelekin.2014.09.004
Google Scholar
[14]
C. Doherty, C. Bleakley, J. Hertel, B. Caulfield, J. Ryan and E. Delahunt, Locomotive biomechanics in persons with chronic ankle instability and lateral ankle sprain copers, J Sci Med Sport. 19 (2016) 524-530
DOI: 10.1016/j.jsams.2015.07.010
Google Scholar
[15]
H. Kim, S. J. Son, M. K. Seeley and J. T. Hopkins, Kinetic Compensations due to Chronic Ankle Instability during Landing and Jumping, Med Sci Sports Exerc. 50 (2018) 308-317
DOI: 10.1249/mss.0000000000001442
Google Scholar
[16]
Khin-Myo-Hla, T. Ishii, M. Sakane and K. Hayashi, Effect of anesthesia of the sinus tarsi on peroneal reaction time in patients with functional instability of the ankle, Foot & ankle international. 20 (1999) 554-559
DOI: 10.1177/107110079902000903
Google Scholar
[17]
J. Tretriluxana, A. Nanbancha, K. Sinsurin, W. Limroongreungrat and H.-K. Wang, Neuromuscular control of the ankle during pre-landing in athletes with chronic ankle instability: Insights from statistical parametric mapping and muscle co-contraction analysis, Physical Therapy in Sport. 47 (2021) 46-52
DOI: 10.1016/j.ptsp.2020.11.023
Google Scholar
[18]
J.-Z. Lin, Y.-A. Lin and H.-J. Lee, Are landing biomechanics altered in elite athletes with chronic ankle instability, Journal of sports science & medicine. 18 (2019) 653
Google Scholar
[19]
S. Han, S. J. Son, H. Kim, H. Lee, M. Seeley and T. Hopkins, Prelanding movement strategies among chronic ankle instability, coper, and control subjects, Sports Biomechanics. 21 (2022) 391-407
DOI: 10.1080/14763141.2021.1927163
Google Scholar
[20]
J. Wilke, D. Groneberg, W. Banzer and F. Giesche, Perceptual–cognitive function and unplanned athletic movement task performance: a systematic review, Int J Environ Res Public Health. 17 (2020) 7481
DOI: 10.3390/ijerph17207481
Google Scholar
[21]
T. Watabe, T. Takabayashi, Y. Tokunaga, T. Yoshida and M. Kubo, Copers adopt an altered movement pattern compared to individuals with chronic ankle instability and control groups in unexpected single-leg landing and cutting task, Journal of Electromyography and Kinesiology. 57 (2021) 102529
DOI: 10.1016/j.jelekin.2021.102529
Google Scholar
[22]
K. M. Steele, M. S. DeMers, M. H. Schwartz and S. L. Delp, Compressive tibiofemoral force during crouch gait, Gait & posture. 35 (2012) 556-560
DOI: 10.1016/j.gaitpost.2011.11.023
Google Scholar
[23]
H. Kim, R. Palmieri-Smith and K. Kipp, Muscle force contributions to ankle joint contact forces during an unanticipated cutting task in people with chronic ankle instability, Journal of Biomechanics. 124 (2021) 110566
DOI: 10.1016/j.jbiomech.2021.110566
Google Scholar
[24]
J. Jang and E. A. Wikstrom, Ankle joint contact force profiles differ between those with and without chronic ankle instability during walking, Gait & posture. 100 (2023) 1-7
DOI: 10.1016/j.gaitpost.2022.11.012
Google Scholar
[25]
C.-M. Fong, J. T. Blackburn, M. F. Norcross, M. McGrath and D. A. Padua, Ankle-dorsiflexion range of motion and landing biomechanics, Journal of athletic training. 46 (2011) 5-10
DOI: 10.4085/1062-6050-46.1.5
Google Scholar
[26]
M. F. Norcross, J. T. Blackburn, B. M. Goerger and D. A. Padua, The association between lower extremity energy absorption and biomechanical factors related to anterior cruciate ligament injury, Clinical biomechanics. 25 (2010) 1031-1036
DOI: 10.1016/j.clinbiomech.2010.07.013
Google Scholar
[27]
M. F. Norcross, M. D. Lewek, D. A. Padua, S. J. Shultz, P. S. Weinhold and J. T. Blackburn, Lower extremity energy absorption and biomechanics during landing, part I: sagittal-plane energy absorption analyses, Journal of athletic training. 48 (2013) 748-756
DOI: 10.4085/1062-6050-48.4.09
Google Scholar
[28]
S.-N. Zhang, B. T. Bates and J. S. Dufek, Contributions of lower extremity joints to energy dissipation during landings, Med Sci Sports Exerc. 32 (2000) 812-819
DOI: 10.1097/00005768-200004000-00014
Google Scholar
[29]
R. S. McCann, M. Terada, K. B. Kosik and P. A. Gribble, Landing kinematics and isometric hip strength of individuals with chronic ankle instability, Foot & ankle international. 40 (2019) 969-977
DOI: 10.1177/1071100719846085
Google Scholar
[30]
H.J. Kim, D.H. Suh, J.H. Yang, J. W. Lee, H.J. Kim, H.S. Ahn, S. W. Han and G. W. Choi, Total ankle arthroplasty versus ankle arthrodesis for the treatment of end-stage ankle arthritis: a meta-analysis of comparative studies, International orthopaedics. 41 (2017) 101-109
DOI: 10.1007/s00264-016-3303-3
Google Scholar
[31]
C.E. Hiller, S.L. Kilbreath and K.M. Refshauge, Chronic ankle instability: evolution of the model, Journal of athletic training. 46 (2011) 133-141
DOI: 10.4085/1062-6050-46.2.133
Google Scholar
[32]
J. Hertel, Functional instability following lateral ankle sprain, Sports medicine. 29 (2000) 361-371
DOI: 10.2165/00007256-200029050-00005
Google Scholar
[33]
R.S. McCann, I.D. Crossett, M. Terada, K.B. Kosik, B.A. Bolding and P.A. Gribble, Hip strength and star excursion balance test deficits of patients with chronic ankle instability, J Sci Med Sport. 20 (2017) 992-996
DOI: 10.1016/j.jsams.2017.05.005
Google Scholar
[34]
X. Zeng, G. Zhu, M. Zhang and S. Q. Xie, Reviewing clinical effectiveness of active training strategies of platform-based ankle rehabilitation robots, Journal of healthcare engineering. 2018 (2018)
DOI: 10.1155/2018/2858294
Google Scholar
[35]
C. E. Hiller, K. M. Refshauge, A. C. Bundy, R. D. Herbert and S. L. Kilbreath, The Cumberland ankle instability tool: a report of validity and reliability testing, Archives of physical medicine and rehabilitation. 87 (2006) 1235-1241
DOI: 10.1016/j.apmr.2006.05.022
Google Scholar
[36]
P. A. Gribble, E. Delahunt, C. Bleakley, B. Caulfield, C. Docherty, F. Fourchet, D. Fong, J. Hertel, C. Hiller and T. Kaminski, Selection criteria for patients with chronic ankle instability in controlled research: a position statement of the International Ankle Consortium, journal of orthopaedic & sports physical therapy. 43 (2013) 585-591
DOI: 10.2519/jospt.2013.0303
Google Scholar
[37]
H. J. Hermens, B. Freriks, C. Disselhorst-Klug and G. Rau, Development of recommendations for SEMG sensors and sensor placement procedures, Journal of Electromyography and Kinesiology. 10 (2000) 361-374
DOI: 10.1016/s1050-6411(00)00027-4
Google Scholar
[38]
D. Xu, H. Zhou, W. Quan, X. Jiang, M. Liang, S. Li, U. C. Ugbolue, J. S. Baker, F. Gusztav, X. J. G. Ma and Posture, A new method proposed for realizing human gait pattern recognition: inspirations for the application of sports and clinical gait analysis, 107 (2024) 293-305
DOI: 10.1016/j.gaitpost.2023.10.019
Google Scholar
[39]
D. Xu, W. Quan, H. Zhou, D. Sun, J. S. Baker and Y. J. S. r. Gu, Explaining the differences of gait patterns between high and low-mileage runners with machine learning, 12 (2022) 2981
DOI: 10.1038/s41598-022-07054-1
Google Scholar
[40]
C. J. De Luca, L. D. Gilmore, M. Kuznetsov and S. H. Roy, Filtering the surface EMG signal: Movement artifact and baseline noise contamination, Journal of Biomechanics. 43 (2010) 1573-1579
DOI: 10.1016/j.jbiomech.2010.01.027
Google Scholar
[41]
D. Xu, H. Zhou, W. Quan, F. Gusztav, J. S. Baker, Y. J. C. M. Gu and P. i. Biomedicine, Adaptive neuro-fuzzy inference system model driven by the non-negative matrix factorization-extracted muscle synergy patterns to estimate lower limb joint movements, 242 (2023) 107848
DOI: 10.1016/j.cmpb.2023.107848
Google Scholar
[42]
S. L. Delp, F. C. Anderson, A. S. Arnold, P. Loan, A. Habib, C. T. John, E. Guendelman and D. G. Thelen, OpenSim: open-source software to create and analyze dynamic simulations of movement, IEEE transactions on biomedical engineering. 54 (2007) 1940-1950
DOI: 10.1109/tbme.2007.901024
Google Scholar
[43]
S. R. Ward, C. M. Eng, L. H. Smallwood and R. L. Lieber, Are current measurements of lower extremity muscle architecture accurate?, Clinical orthopaedics and related research. 467 (2009) 1074-1082
DOI: 10.1007/s11999-008-0594-8
Google Scholar
[44]
A. Rajagopal, C.L. Dembia, M.S. DeMers, D.D. Delp, J.L. Hicks and S.L. J. I. t. o. b. e. Delp, Full-body musculoskeletal model for muscle-driven simulation of human gait, 63 (2016) 2068-2079
DOI: 10.1109/tbme.2016.2586891
Google Scholar
[45]
J. L. Hicks, T. K. Uchida, A. Seth, A. Rajagopal and S. L. Delp, Is my model good enough? Best practices for verification and validation of musculoskeletal models and simulations of movement, Journal of biomechanical engineering. 137 (2015) 020905
DOI: 10.1115/1.4029304
Google Scholar
[46]
E. Van Der Kruk, F. Van Der Helm, H. Veeger and A. L. Schwab, Power in sports: a literature review on the application, assumptions, and terminology of mechanical power in sport research, Journal of Biomechanics. 79 (2018) 1-14
DOI: 10.1016/j.jbiomech.2018.08.031
Google Scholar
[47]
R. W. Nuckols, K. Z. Takahashi, D. J. Farris, S. Mizrachi, R. Riemer and G. S. Sawicki, Mechanics of walking and running up and downhill: A joint-level perspective to guide design of lower-limb exoskeletons, PLoS One. 15 (2020) e0231996
DOI: 10.1371/journal.pone.0231996
Google Scholar
[48]
D. Gehring, S. Wissler, G. Mornieux and A. Gollhofer, How to sprain your ankle–a biomechanical case report of an inversion trauma, Journal of Biomechanics. 46 (2013) 175-178
DOI: 10.1016/j.jbiomech.2012.09.016
Google Scholar
[49]
J. A. Ashton-Miller, Y. He, V. A. Kadhiresan, D. McCubbrey and J. Faulkner, An apparatus to measure in vivo biomechanical behavior of dorsi-and plantarflexors of mouse ankle, Journal of Applied Physiology. 72 (1992) 1205-1211
DOI: 10.1152/jappl.1992.72.3.1205
Google Scholar
[50]
A. F. DeJong, R. M. Koldenhoven and J. Hertel, Hip biomechanical alterations during walking in chronic ankle instability patients: a cross-correlation analysis, Sports Biomechanics. 21 (2022) 460-471
DOI: 10.1080/14763141.2021.1884285
Google Scholar
[51]
H. Kim, R. Palmieri-Smith and K. Kipp, Time-frequency analysis of muscle activation patterns in people with chronic ankle instability during Landing and cutting tasks, Gait & posture. 82 (2020) 203-208
DOI: 10.1016/j.gaitpost.2020.09.006
Google Scholar
[52]
J. L. Rios, A. L. Gorges and M. J. dos Santos, Individuals with chronic ankle instability compensate for their ankle deficits using proximal musculature to maintain reduced postural sway while kicking a ball, Human movement science. 43 (2015) 33-44
DOI: 10.1016/j.humov.2015.07.001
Google Scholar
[53]
M. Terada, B. Pietrosimone and P. A. Gribble, Individuals with chronic ankle instability exhibit altered landing knee kinematics: potential link with the mechanism of loading for the anterior cruciate ligament, Clinical biomechanics. 29 (2014) 1125-1130
DOI: 10.1016/j.clinbiomech.2014.09.014
Google Scholar
[54]
B. Caulfield and M. Garrett, Functional instability of the ankle: differences in patterns of ankle and knee movement prior to and post landing in a single leg jump, International journal of sports medicine. 23 (2002) 64-68
DOI: 10.1055/s-2002-19272
Google Scholar
[55]
J.J. Beck, C. VandenBerg, A. I. Cruz and H. B. Ellis Jr, Low energy, lateral ankle injuries in pediatric and adolescent patients: a systematic review of ankle sprains and nondisplaced distal fibula fractures, Journal of Pediatric Orthopaedics. 40 (2020) 283-287
DOI: 10.1097/bpo.0000000000001438
Google Scholar
[56]
S. Han, H. Lee, M. Oh and J. T. Hopkins, Lower Extremity Energy Dissipation and Generation During Jump Landing and Cutting in Patients With Chronic Ankle Instability, Journal of athletic training. 58 (2023) 912-919
DOI: 10.4085/1062-6050-0452.22
Google Scholar
[57]
S. Mineta, M. Fukano and N. Hirose, Less impact absorption at the ankle joint is related to the single-leg landing stability deficit in patients with chronic ankle instability, Journal of Biomechanics. 149 (2023) 111509
DOI: 10.1016/j.jbiomech.2023.111509
Google Scholar
[58]
A.F. DeJong, L.C. Mangum and J. Hertel, Ultrasound imaging of the gluteal muscles during the Y-Balance test in individuals with or without chronic ankle instability, Journal of athletic training. 55 (2020) 49-57
DOI: 10.4085/1062-6050-363-18
Google Scholar
[59]
M. Terada, B.G. Pietrosimone and P. A. Gribble, Therapeutic interventions for increasing ankle dorsiflexion after ankle sprain: a systematic review, Journal of athletic training. 48 (2013) 696-709
DOI: 10.4085/1062-6050-48.4.11
Google Scholar