[1]
B.A. Leon, Cesar, R.G.C., Javier, A.G.C., Jordy, A.L.E., Jose, R.M.R., The Demand for New Antibiotics: Antimicrobial Peptides, Nanoparticles, and Combinatorial Therapies as Future Strategies in Antibacterial Agent Design, Frontiers in Microbiology 11 (2020) 10.
DOI: 10.3389/fmicb.2020.01669
Google Scholar
[2]
M. Dadashi, P. Sharifian, N. Bostanshirin, B. Hajikhani, N. Bostanghadiri, N. Khosravi-Dehaghi, A. van Belkum, D. Darban-Sarokhalil, The Global Prevalence of Daptomycin, Tigecycline, and Linezolid-Resistant Enterococcus faecalis and Enterococcus faecium Strains From Human Clinical Samples: A Systematic Review and Meta-Analysis, Front Med (Lausanne) 8 (2021) 720647.
DOI: 10.3389/fmed.2021.720647
Google Scholar
[3]
M.S. Mulani, E.E. Kamble, S.N. Kumkar, M.S. Tawre, K.R. Pardesi, Emerging Strategies to Combat ESKAPE Pathogens in the Era of Antimicrobial Resistance: A Review, Front Microbiol 10 (2019) 539.
DOI: 10.3389/fmicb.2019.00539
Google Scholar
[4]
M.A. Salam, M.Y. Al-Amin, M.T. Salam, J.S. Pawar, N. Akhter, A.A. Rabaan, M.A.A. Alqumber, Antimicrobial Resistance: A Growing Serious Threat for Global Public Health, Healthcare (Basel) 11(13) (2023).
DOI: 10.20944/preprints202305.0555.v1
Google Scholar
[5]
M. Gajdacs, The Concept of an Ideal Antibiotic: Implications for Drug Design, Molecules 24(5) (2019).
Google Scholar
[6]
N. Hamdan, A. Yamin, S.A. Hamid, W. Khodir, V. Guarino, Functionalized Antimicrobial Nanofibers: Design Criteria and Recent Advances, Journal of Functional Biomaterials 12(4) (2021).
DOI: 10.3390/jfb12040059
Google Scholar
[7]
I. Maliszewska, T. Czapka, Electrospun Polymer Nanofibers with Antimicrobial Activity, Polymers (Basel) 14(9) (2022).
DOI: 10.3390/polym14091661
Google Scholar
[8]
S. Alven, B. Buyana, Z. Feketshane, B.A. Aderibigbe, Electrospun Nanofibers/Nanofibrous Scaffolds Loaded with Silver Nanoparticles as Effective Antibacterial Wound Dressing Materials, Pharmaceutics 13(7) (2021).
DOI: 10.3390/pharmaceutics13070964
Google Scholar
[9]
G. Sabarees, V. Velmurugan, G.P. Tamilarasi, V. Alagarsamy, V. Raja Solomon, Recent Advances in Silver Nanoparticles Containing Nanofibers for Chronic Wound Management, Polymers (Basel) 14(19) (2022).
DOI: 10.3390/polym14193994
Google Scholar
[10]
S. Rashki, K. Asgarpour, H. Tarrahimofrad, M. Hashemipour, M.S. Ebrahimi, H. Fathizadeh, A. Khorshidi, H. Khan, Z. Marzhoseyni, M. Salavati-Niasari, H. Mirzaei, Chitosan-based nanoparticles against bacterial infections, Carbohydr Polym 251 (2021) 117108.
DOI: 10.1016/j.carbpol.2020.117108
Google Scholar
[11]
H.R.A. El-Zehery, R.A. Zaghloul, H.M. Abdel-Rahman, A.A. Salem, K.A. El-Dougdoug, Novel strategies of essential oils, chitosan, and nano- chitosan for inhibition of multi-drug resistant: E. coli O157:H7 and Listeria monocytogenes, Saudi J Biol Sci 29(4) (2022) 2582-2590.
DOI: 10.1016/j.sjbs.2021.12.036
Google Scholar
[12]
S.M. Ghahestani, E. Shahab, S. Karimi, M.H. Madani, Methylene blue may have a role in the treatment of COVID-19, Med Hypotheses 144 (2020) 110163.
DOI: 10.1016/j.mehy.2020.110163
Google Scholar
[13]
B. Meesaragandla, D. Sarkar, V. Mahalingam, Methylene Blue-Loaded Upconverting Hydrogel Nanocomposite: Potential Material for Near-Infrared Light-Triggered Photodynamic Therapy Application, ACS Omega 4(2) (2019) 3169-3177.
DOI: 10.1021/acsomega.8b02416
Google Scholar
[14]
J.P. Tardivo, A. Del Giglio, L.H.C. Paschoal, A.S. Ito, M.S. Baptista, Treatment of melanoma lesions using methylene blue and RL50 light source, Photodiagnosis and Photodynamic Therapy 1(4) (2004) 345-346.
DOI: 10.1016/s1572-1000(05)00005-0
Google Scholar
[15]
D.R. Mokoena, B.P. George, H. Abrahamse, Photodynamic Therapy Induced Cell Death Mechanisms in Breast Cancer, Int J Mol Sci 22(19) (2021).
DOI: 10.3390/ijms221910506
Google Scholar
[16]
I. Ben Amor, H. Hemmami, S.E. Laouini, S. Zeghoud, M. Benzina, S. Achour, A. Naseef, A. Alsalme, A. Barhoum, Use of Insect-Derived Chitosan for the Removal of Methylene Blue Dye from Wastewater: Process Optimization Using a Central Composite Design, Materials (Basel) 16(14) (2023).
DOI: 10.3390/ma16145049
Google Scholar
[17]
E. Salehi, A. Farahani, Macroporous chitosan/polyvinyl alcohol composite adsorbents based on activated carbon substrate, Journal of Porous Materials 24(5) (2017) 1197-1207.
DOI: 10.1007/s10934-016-0359-9
Google Scholar
[18]
N.A.B. Mohd Salleh, A.M. Afifi, F.B. Mohamed Zuki, N.B. Muhammad Sarih, K. Kalantari, E. Niza Mohamad, Studies on properties and adsorption ability of bilayer chitosan/PVA/PVDF electrospun nanofibrous, Desalination and Water Treatment 206 (2020) 177-188.
DOI: 10.5004/dwt.2020.26279
Google Scholar
[19]
N.F. Alharby, R.S. Almutairi, N.A. Mohamed, Adsorption Behavior of Methylene Blue Dye by Novel CrossLinked O-CM-Chitosan Hydrogel in Aqueous Solution: Kinetics, Isotherm and Thermodynamics, Polymers (Basel) 13(21) (2021).
DOI: 10.3390/polym13213659
Google Scholar
[20]
M. Agarwal, M.K. Agarwal, N. Shrivastav, S. Pandey, R. Das, P. Gaur, Preparation of Chitosan Nanoparticles and their In-vitro Characterization, International Journal of Life-Sciences Scientific Research 4(2) (2018) 1713-1720.
DOI: 10.21276/ijlssr.2018.4.2.17
Google Scholar
[21]
H. Yao, J. Liu, X. Jiang, F. Chen, X. Lu, J. Zhang, Analysis of the Clinical Effect of Combined Drug Susceptibility to Guide Medication for Carbapenem-Resistant Klebsiella pneumoniae Patients Based on the Kirby-Bauer Disk Diffusion Method, Infect Drug Resist 14 (2021) 79-87.
DOI: 10.2147/idr.s282386
Google Scholar
[22]
T.B. Nguyen, R.A. Doong, C.P. Huang, C.W. Chen, C.D. Dong, Activation of persulfate by CoO nanoparticles loaded on 3D mesoporous carbon nitride (CoO@meso-CN) for the degradation of methylene blue (MB), Sci Total Environ 675 (2019) 531-541.
DOI: 10.1016/j.scitotenv.2019.04.230
Google Scholar
[23]
J. Ederer, P. Ecorchard, M.Š. Slušná, J. Tolasz, D. Smržová, S. Lupínková, P. Janoš, M.R.R. Kooh, A Study of Methylene Blue Dye Interaction and Adsorption by Monolayer Graphene Oxide, Adsorption Science & Technology 2022 (2022).
DOI: 10.1155/2022/7385541
Google Scholar
[24]
T.M. Tamer, R. Abbas, W.A. Sadik, A.M. Omer, M.M. Abd-Ellatif, M.S. Mohy-Eldin, Development of novel amino-ethyl chitosan hydrogel for the removal of methyl orange azo dye model, Sci Rep 14(1) (2024) 1284.
DOI: 10.1038/s41598-024-51538-1
Google Scholar
[25]
O.V. Ovchinnikov, A.V. Evtukhova, T.S. Kondratenko, M.S. Smirnov, V.Y. Khokhlov, O.V. Erina, Manifestation of intermolecular interactions in FTIR spectra of methylene blue molecules, Vibrational Spectroscopy 86 (2016) 181-189.
DOI: 10.1016/j.vibspec.2016.06.016
Google Scholar
[26]
M. Palaniappan, D. Selvaraj, S. Kandasamy, Y.H. Kahng, M. Narayanan, R. Rajendran, R. Rangappan, Architectural MCM 41 was anchored to the Schiff base Co(II) complex to enhance methylene blue dye degradation and mimic activity, Environ Res 215(Pt 3) (2022) 114325.
DOI: 10.1016/j.envres.2022.114325
Google Scholar
[27]
J.R. do Carmo, J.L.G. Corrêa, T.C. Polachini, J. Telis-Romero, Properties of isomaltulose (Palatinose®) – An emerging healthy carbohydrate: Effect of temperature and solute concentration, Journal of Molecular Liquids 347 (2022).
DOI: 10.1016/j.molliq.2021.118304
Google Scholar
[28]
M.S. Islam, B.C. Ang, A. Andriyana, A.M. Afifi, A review on fabrication of nanofibers via electrospinning and their applications, SN Applied Sciences 1(10) (2019).
DOI: 10.1007/s42452-019-1288-4
Google Scholar
[29]
B. Elveren, S. Hribernik, M. Kurečič, Fabrication of Polysaccharide-Based Halochromic Nanofibers via Needle-Less Electrospinning and Their Characterization: A Study of the Leaching Effect, Polymers 14(19) (2022).
DOI: 10.3390/polym14194239
Google Scholar
[30]
M.D. Colette, C.S. Burke, D.M. Brian, Optical Chemical Sensors, Chemical Reviews 108 (2008) 400-422.
Google Scholar
[31]
G.J. Mohr, H. Muller, B. Bussemer, A. Stark, T. Carofiglio, S. Trupp, R. Heuermann, T. Henkel, D. Escudero, L. Gonzalez, Design of acidochromic dyes for facile preparation of pH sensor layers, Analytical and Bioanalytical Chemistry 392(7-8) (2008) 1411-8.
DOI: 10.1007/s00216-008-2428-7
Google Scholar
[32]
B. Ding, M. Wang, J. Yu, G. Sun, Gas sensors based on electrospun nanofibers, Sensors (Basel) 9(3) (2009) 1609-24.
DOI: 10.3390/s90301609
Google Scholar
[33]
S. Çetintaş, An alternative application for reuse of leaching residues: Determination of adsorption behaviour for methylene blue and process optimization, Sustainable Chemistry and Pharmacy 23 (2021).
DOI: 10.1016/j.scp.2021.100504
Google Scholar
[34]
H.T. Van, T.M.P. Nguyen, V.T. Thao, X.H. Vu, T.V. Nguyen, L.H. Nguyen, Applying Activated Carbon Derived from Coconut Shell Loaded by Silver Nanoparticles to Remove Methylene Blue in Aqueous Solution, Water, Air, & Soil Pollution 229(12) (2018).
DOI: 10.1007/s11270-018-4043-3
Google Scholar
[35]
L. Wang, Q. Li, A. Wang, Adsorption of cationic dye on N,O-carboxymethyl-chitosan from aqueous solutions: equilibrium, kinetics, and adsorption mechanism, Polymer Bulletin 65(9) (2010) 961-975.
DOI: 10.1007/s00289-010-0363-1
Google Scholar
[36]
A.I.B. I. Hayati, TH. F. Tadros, Investigations into the Mechanisms of Electrohydrodynamic Spraying of Liquids Journal of Colloid and Interface Science 117 (1986) 17.
DOI: 10.1016/0021-9797(87)90185-8
Google Scholar
[37]
A.C. Niam, E. Fenelon, E. Ningsih, Y.W. Mirzayanti, E. Kristanti, M. Naushad, High-Efficiency Adsorption of Hexavalent Chromium from Aqueous Solution by Samanea saman Activated Carbon, Adsorption Science & Technology 2022 (2022) 1-10.
DOI: 10.1155/2022/8960379
Google Scholar
[38]
G. Moussavi, B. Barikbin, Biosorption of chromium(VI) from industrial wastewater onto pistachio hull waste biomass, Chemical Engineering Journal 162(3) (2010) 893-900.
DOI: 10.1016/j.cej.2010.06.032
Google Scholar
[39]
D. Yan, Y. Li, Y. Liu, N. Li, X. Zhang, C. Yan, Antimicrobial Properties of Chitosan and Chitosan Derivatives in the Treatment of Enteric Infections, Molecules 26(23) (2021).
DOI: 10.3390/molecules26237136
Google Scholar
[40]
N.M. Kuznetsov, Y.D. Zagoskin, A.V. Bakirov, A.Y. Vdovichenko, S.N. Malakhov, A.P. Istomina, S.N. Chvalun, Is Chitosan the Promising Candidate for Filler in Nature-Friendly Electrorheological Fluids?, ACS Sustainable Chemistry & Engineering 9(10) (2021) 3802-3810.
DOI: 10.1021/acssuschemeng.0c08793
Google Scholar
[41]
L.d.S. Soares, R.B. Perim, E.S. de Alvarenga, L.d.M. Guimarães, A.V.N.d.C. Teixeira, J.S.d.R. Coimbra, E.B. de Oliveira, Insights on physicochemical aspects of chitosan dispersion in aqueous solutions of acetic, glycolic, propionic or lactic acid, International Journal of Biological Macromolecules 128 (2019) 140-148.
DOI: 10.1016/j.ijbiomac.2019.01.106
Google Scholar
[42]
J. Zhu, J. Hou, Y. Zhang, M. Tian, T. He, J. Liu, V. Chen, Polymeric antimicrobial membranes enabled by nanomaterials for water treatment, Journal of Membrane Science 550 (2018) 173-197.
DOI: 10.1016/j.memsci.2017.12.071
Google Scholar
[43]
J. Menz, E. Baginska, A. Arrhenius, A. Haiss, T. Backhaus, K. Kummerer, Antimicrobial activity of pharmaceutical cocktails in sewage treatment plant effluent - An experimental and predictive approach to mixture risk assessment, Environmental Pollution 231(Pt 2) (2017) 1507-1517.
DOI: 10.1016/j.envpol.2017.09.009
Google Scholar
[44]
M. Piksa, C. Lian, I.C. Samuel, K.J. Pawlik, I.D.W. Samuel, K. Matczyszyn, The role of the light source in antimicrobial photodynamic therapy, Chemical Society Reviews 52(5) (2023) 1697-1722.
DOI: 10.1039/d0cs01051k
Google Scholar
[45]
C. Jiang, W. Yang, C. Wang, W. Qin, J. Ming, M. Zhang, H. Qian, T. Jiao, Methylene Blue-Mediated Photodynamic Therapy Induces Macrophage Apoptosis via ROS and Reduces Bone Resorption in Periodontitis, Oxid Med Cell Longev 2019 (2019) 1529520.
DOI: 10.1155/2019/1529520
Google Scholar
[46]
M.E. Md. Nuruzzaman Munsi, Md. Osman Gani, Md. Moinuddin , K.a.M.S. Alam, Identification of Bacterial Agents from The Faecal Samples of Diarrhoeic Sheep And Their Antibiotic Sensitivity, Res. Agric. Livest. Fish. 2 (2015) 5.
DOI: 10.3329/ralf.v2i3.26168
Google Scholar