[1]
E. Okay, A.C. Ozarslan, Ö. Başal, H. Cakıroglu, S. Yucel, K. Özkan, M.N. Doral, The Biocompatibility of a new type of 45S5 bioactive graft in a sheep model: a pilot study, Cureus, 15(7) (2023) e.41521.
DOI: 10.7759/cureus.41521
Google Scholar
[2]
N. Jafari, M. S. Habashi, A. Hashemi, R. Shirazi, N. Tanideh, A. Tamadon, Application of bioactive glasses in various dental fields, Biomaterials Research, 26 (2022) 31.
DOI: 10.1186/s40824-022-00274-6
Google Scholar
[3]
I. Ielo, G. Calabrese, G. de Luca, S. Conoci, Recent advances in hydroxyapatite-based biocomposites for bone tissue regeneration in orthopedics, International Journal of Molecular Sciences, 23(17) (2022) 9721.
DOI: 10.3390/ijms23179721
Google Scholar
[4]
R. M. Rad, A. Z. Alshemary, Z. Evis, D. Keskin, K. Altunbaş, A. Tezcaner, Structural and biological assessment of boron doped bioactive glass nanoparticles for dental tissue applications, Ceramics International, 44(8) (2018) 9854-9864.
DOI: 10.1016/j.ceramint.2018.02.230
Google Scholar
[5]
J. Bejarano, A.R. Boccaccini, C. Covarrubias, H. Palza, Effect of Cu-and Zn-doped bioactive glasses on the In vitro bioactivity, mechanical and degradation behavior of biodegradable PDLLA scaffolds, Materials, 13 (2020) 2908.
DOI: 10.3390/ma13132908
Google Scholar
[6]
A.B. Workie, E.M. Sefene, Ion-doped mesoporous bioactive glass: preparation, characterization, and applications using the spray pyrolysis method, RSC Advances, 12(3) (2022) 1592-1603.
DOI: 10.1039/d1ra06113e
Google Scholar
[7]
H. Manoochehri, M Ghorbani, M. M. Moghaddam, M. R. Nourani, P. Makvandi, E. Sharifi, Strontium doped bioglass incorporated hydrogel-based scaffold for amplified bone tissue regeneration, Scientific Reports, 12(1) (2022) 10160.
DOI: 10.1038/s41598-022-14329-0
Google Scholar
[8]
P. T. Bhattacharya, S.R. Misra, and M. Hussain, Nutritional aspects of essential trace elements in oral health and disease: an extensive review, Scientifica (Cairo), 2016 (2016) 5464373.
DOI: 10.1155/2016/5464373
Google Scholar
[9]
W. Roczniak, B. B. Dopierala, E. Cipora, A. J. Kolon, M. Konieczny, M. B. Roczniak, Analysis of the content of chromium in certain parts of the human knee joint, Int J Environ Res Public Health, 15(5) (2018) 1013.
DOI: 10.3390/ijerph15051013
Google Scholar
[10]
Y. Hua, S. Clark, J. Ren, N. Sreejayan, Molecular mechanisms of chromium in alleviating insulin resistance, The Journal of Nutritional Biochemistry, 23(4) (2012) 313-319.
DOI: 10.1016/j.jnutbio.2011.11.001
Google Scholar
[11]
R.A. Ngala, M.A. Awe, and P. Nsiah, The effects of plasma chromium on lipid profile, glucose metabolism and cardiovascular risk in type 2 diabetes mellitus. a case-control study, PloS one, 13(7) (2018) e0197977.
DOI: 10.1371/journal.pone.0197977
Google Scholar
[12]
E. Vafa, R. Bazargan-Lari and M.E. Bahrololoom, Synthesis of 45S5 bioactive glass-ceramic using the sol-gel method, catalyzed by low concentration acetic acid extracted from homemade vinegar, Journal of Materials Research and Technology, 10 (2021) 1427-1436.
DOI: 10.1016/j.jmrt.2020.12.093
Google Scholar
[13]
S. Tautkus, K. Ishikawa, R. Ramanauskas and A. Kareiva, Zinc and chromium co-doped calcium hydroxyapatite: sol-gel synthesis, characterization, behaviour in simulated body fluid and phase transformations, Journal of Solid State Chemistry, 284 (2020) 121202.
DOI: 10.1016/j.jssc.2020.121202
Google Scholar
[14]
A. Z. Alshemary, Y. F. Goh, I. Shakir, R. Hussain, Synthesis, characterization and optical properties of chromium doped β-Tricalcium phosphate, Ceramics International, 41(1, Part B) (2015) 1663-1669.
DOI: 10.1016/j.ceramint.2014.09.107
Google Scholar
[15]
H.O. Simila and A.R. Boccaccini, Sol-gel synthesis of lithium doped mesoporous bioactive glass nanoparticles and tricalcium silicate for restorative dentistry: comparative investigation of physico-chemical structure, antibacterial susceptibility and biocompatibility, Frontiers in Bioengineering and Biotechnology, 11 (2023) 1065597.
DOI: 10.3389/fbioe.2023.1065597
Google Scholar
[16]
M. Wakamura, H. Tanaka, Y. Naganuma, N. Yoshida, T. Watanabe, Surface structure and visible light photocatalytic activity of titanium–calcium hydroxyapatite modified with Cr (III), Advanced Powder Technology, 22(4) (2011) 498-503.
DOI: 10.1016/j.apt.2010.10.012
Google Scholar
[17]
T.S. de Araujo, Z. S. Macedo, P. A. S. C. de Oliveira, M. E. G. Valerio Production and characterization of pure and Cr 3+-doped hydroxyapatite for biomedical applications as fluorescent probes, Journal of Materials Science, 42 (2007) 2236-2243.
DOI: 10.1007/s10853-006-0536-3
Google Scholar