[1]
J.P. Chambers, B.P. Arulanandam, L.L. Matta, A. Weis, and J.J. Valdes, Biosensor recognition elements, Current issues in molecular biology, 10 (2008), 1–12.
Google Scholar
[2]
K. Cammann, The principles of biosensors, Analytical Chemistry, 49(6) (1977), 832–844.
Google Scholar
[3]
L. C. Clark, Electrochemical sensors in biomedical research, Journal of Biosensor Technology, 10(2) (1962), 109–117.
Google Scholar
[4]
A. Collings and F. Caruso,Biosensors:recentadvances, Reports on Progress in Physics, 60(11) (1997), 1397.
Google Scholar
[5]
H. H. Nguyen, S.H. Lee, U.J. Lee, C.D. Fermin, and M.Kim, Immobilized enzymes in biosensor applications, Materials, 12(1) (2019), 121.
DOI: 10.3390/ma12010121
Google Scholar
[6]
H. A. Alhadrami, Biosensors: Classifications, medical applications, and future prospective, Biotechnology and applied biochemistry, 65(3) (2018), 497–508.
DOI: 10.1002/bab.1621
Google Scholar
[7]
D. Grieshaber, R. MacKenzie, J. Vörös, and E. Reimhult, Electrochemical biosensors sensor principles and architectures, Sensors, 8(3) (2008), 1400–1458.
DOI: 10.3390/s80314000
Google Scholar
[8]
F. Mollarasouli, S. Kurbanoglu, and S.A. Ozkan, The role of electrochemical immunosensors in clinical analysis, Biosensors, 9(3) (2019), 86.
DOI: 10.3390/bios9030086
Google Scholar
[9]
P. Mehrotra, Biosensors and their applications-a review, Journal of Oral Biology and Craniofacial Research, 6(2) (2016), 153–159.
Google Scholar
[10]
S. P. Mohanty and E. Koucianos, Biosensors: A tutorial review, IEEE Potentials, 25(2) (2006), 35–40.
Google Scholar
[11]
P. Steglich, M. Hülsemann,B. Dietzel, and A. Mai, Optical biosensors based on silicon-on- insulator ring resonators:A review, Molecules, 24(3) (2019), 1–16.
DOI: 10.3390/molecules24030519
Google Scholar
[12]
Y. Yang, O. D. Miller, T. Christensen, J. D. Joannopoulos, and M. Soljačić, Low-loss plasmonic dielectric nanoresonators, Nano Letters, 17(5) (2017), 3238–3245.
DOI: 10.1021/acs.nanolett.7b00852
Google Scholar
[13]
O. Yavas, M. Svedendahl, P. Dobosz, V.Sanz, and R. Quidant, On-a-chip biosensing based on all-dielectric nanoresonators, Nano Letters, 17(7) (2017), 4421–4426.
DOI: 10.1021/acs.nanolett.7b01518
Google Scholar
[14]
Y. Takagi, A. Shinya, S. Matsuo, and M. Notomi, Silicon single micro ring resonator-loaded mach–zehnder interferometer for biosensor applications, Japanese Journal of Applied Physics, 56(4S) (2017), 04CH08.
DOI: 10.7567/jjap.56.04ch08
Google Scholar
[15]
M. S. Luchansky and R. C. Bailey, High Q optical sensors for chemical and biological analysis," Anal. Chem., 84(2) (2012),793–821.
DOI: 10.1021/ac2029024
Google Scholar
[16]
Y. Zhang, Q. Song, D. Zhao, X. Tang, Y. Zhang, Z. Liu, and L.Yuan, Review of different coupling methods with whispering gallery mode resonator cavities for sensing, Opt. Laser Technol., 159 (2023), 108955.
DOI: 10.1016/j.optlastec.2022.108955
Google Scholar
[17]
J. H. Wade and R. C. Bailey, Applications of optical microcavity resonators in analytical chemistry, Annual Review of Analytical Chemistry, 9(1) (2016), 1–25.
DOI: 10.1146/annurev-anchem-071015-041742
Google Scholar
[18]
COMSOL Multiphysics User Guide, Version5.6, COMSOL Inc.,(2020).
Google Scholar
[19]
J. H. Wade and R. C. Bailey, Refractive index based detection of gradient elution liquid chromatography using chip integrated microring resonator arrays, Analytical chemistry, 86(1) (2014), 913–919
DOI: 10.1021/ac4035828
Google Scholar
[20]
K. Scholten, X. Fan, and E. T. Zellers, A micro fabricated optofluidic ring resonator for sensitive, high speed detection of volatile organic compounds, Lab on a Chip, 14(19) (2014), 3873–3880.
DOI: 10.1039/c4lc00739e
Google Scholar
[21]
H. C. Frankis, D. Su, D. B. Bonneville, and J. D. B. Bradley, A tellurium oxide microcavity resonator sensor integrated on chip with a silicon waveguide, Sensors, 18 (11) (2018), 4061
DOI: 10.3390/s18114061
Google Scholar
[22]
V. Qaradaghi, A. Ramezany, S. Babu, J. Lee, and S. Pourkamali, Nanoelectromechanical disk resonators as highly sensitive mass sensors, IEEE Electron Device Letters,39(11) (2018), 1744- 1747.
DOI: 10.1109/led.2018.2871754
Google Scholar