Improvement of Mechanical Properties of Synthetic and Natural Fibers Composites for Application in Orthopedic Prosthetics

Article Preview

Abstract:

This study investigates the mechanical performance of hybrid epoxy composites reinforced with natural (jute) and synthetic (carbon and glass) fibers. Two hybrid laminates were fabricated: unidirectional carbon–woven glass (2UCF–2WGF/EPOXY) and unidirectional carbon–woven jute (2UCF–2WJF/EPOXY). Flexural tests revealed that the carbon–jute composite exhibited higher stiffness with a modulus of 69.12 GPa compared to 19.74 GPa for the carbon–glass system. Conversely, the carbon–glass composite demonstrated greater tensile modulus (5.07 GPa vs. 2.23 GPa) and hardness (37.55 HV vs. 20.37 HV), indicating better load transfer and surface resistance. These differences arise from fiber–matrix adhesion, fracture morphology, and energy absorption mechanisms observed in SEM analyses. The results emphasize that selecting suitable fiber combinations allows control over stiffness and strength balance. Such natural–synthetic hybrid composites present an environmentally sustainable approach for advanced structural and biomedical applications requiring optimized mechanical and functional performance.

You might also be interested in these eBooks

Info:

Pages:

55-67

Citation:

Online since:

February 2026

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2026 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S.B. Koppula, S. Karachi, V. Kumar, N.D. Borra, V.S.N. Neigapula, Investigation into the mechanical characteristics of natural fiber-reinforced polymer composites: Effects of flax and e-glass reinforcement and stacking configuration, Mater. Today: Proc. 115 (2024) 82–88.

DOI: 10.1016/j.matpr.2023.07.020

Google Scholar

[2] A. Gupta, S.M. Shohel, M. Singh, J. Singh, Study on mechanical properties of natural fiber (Jute)/synthetic fiber (Glass) reinforced polymer hybrid composite by representative volume element using finite element analysis: A numerical approach and validated by experiment, Hybrid Adv. 6 (2024) 100239.

DOI: 10.1016/j.hybadv.2024.100239

Google Scholar

[3] Y. Tasgin, G. Demircan, S. Kandemir, A. Acikgoz, Mechanical, wear and thermal properties of natural fiber-reinforced epoxy composite: cotton, sisal, coir and wool fibers, J. Mater. Sci. 59 (2024) 10844–10857.

DOI: 10.1007/s10853-024-09810-2

Google Scholar

[4] H. Khelifa, A. Bezazi, H. Boumediri, G.G. del Pino, S. Ellagoune, P.N. Reis, F. Scarpa, Mechanical properties optimization using response surface methodology (RSM) of a bio-mortar manufactured based on sisal fibers, Int. J. Adv. Manuf. Technol. (2025) 1–21.

DOI: 10.21203/rs.3.rs-5844500/v1

Google Scholar

[5] H. Boussehel, L. Ghelani, B. Guerira, A. Bezazi, P. Reis, O.Y. Alothman, M. Jawaid, Effect of treatment on mechanical and thermal properties of date palm fibers/polyvinyl chloride composites, J. Vinyl Addit. Technol. 31 (2025) 604–621.

DOI: 10.1002/vnl.22194

Google Scholar

[6] A. Akhzeroun, A. Semcha, A. Bezazi, H. Boumediri, P.N. Reis, F. Scarpa, Development and characterization of a new sustainable composite reinforced with date palm stems for rehabilitation and reconstruction of earthen built heritage, Compos. Struct. 316 (2023) 117015.

DOI: 10.1016/j.compstruct.2023.117015

Google Scholar

[7] D.E. Gaagaiaa, M. Bouakba, A. Layachi, Thermo-physico-chemical and statistical mechanical properties of Washingtonian filifera new lignocellulosic fiber, Eng. Solid Mech. 7 (2019) 137–150.

DOI: 10.5267/j.esm.2019.3.002

Google Scholar

[8] D.E. Gaagaia, M. Bouakba, M.d.M. Barbero-Barrera, L. Abdelheq, N. Boutasseta, Physico-Chemical and Thermomechanical Analysis and Characterization of a Thermoplastic Composite Material Reinforced by Washingtonia Filifera Novel Vegetable Fibers, Int. J. Eng. Res. Afr. 59 (2022) 43–55.

DOI: 10.4028/p-8ew64s

Google Scholar

[9] K. Belkaid, H. Aouaichia, D.E. Gaagaia, N. Boutasseta, B. Boubir, A. Deliou, A Comparative Analysis of Tensile Characteristics of Epoxy Composites: Assessing TWARMAT, Woven Glass, and Woven Carbon Fiber Reinforcements, Mech. Compos. Mater. (2024).

DOI: 10.1007/s11029-024-10226-x

Google Scholar

[10] D.E. Gaagaia, B. Boubir, N. Boutasseta, K. Belkaid, H. Aouaichia, T.G. Temam, Y. Gheid, S.-E. Hariati, Development and mechanical properties investigation of novel Kevlar/E-Glass/Washingtonia Filifera/E-Glass/Epoxy hybrid laminated composite, Compos. Mech. Comput. Appl. Int. J. 15 (2024).

DOI: 10.1615/compmechcomputapplintj.2023050117

Google Scholar

[11] D.E. Gaagaia, N. Boutasseta, K. Belkaid, B. Boubir, H. Aouaichia, T.T. Guettaf, Y. Yaklef, Comparative Study of the Mechanical Properties of a Novel Epoxy Composite Material Reinforced by Bidirectional Woven Carbon Fabric and Hybrid Kevlar/E-Glass, Int. J. Eng. Res. Afr. 69 (2024) 19–28.

DOI: 10.4028/p-xz0lis

Google Scholar

[12] W. Mankai, S.B. Brahim, B.B. Smida, R.B. Cheikh, M. Chafra, Mechanical behavior study of a lower limb prosthetic socket made of natural fiber reinforced composite, J. Eng. Res. 9 (2021).

DOI: 10.36909/jer.v9i2.8699

Google Scholar

[13] A.D. Castro-Franco, M. Siqueiros-Hernández, V. García-Angel, I. Mendoza-Muñoz, L.E. Vargas-Osuna, H.D. Magaña-Almaguer, A review of natural fiber-reinforced composites for lower-limb prosthetic designs, Polymers 16 (2024) 1293.

DOI: 10.3390/polym16091293

Google Scholar

[14] D.K. Rajak, P.H. Wagh, E. Linul, Manufacturing technologies of carbon/glass fiber-reinforced polymer composites and their properties: A review, Polymers 13 (2021) 3721.

DOI: 10.3390/polym13213721

Google Scholar

[15] W. Ouarhim, M. Ait-Dahi, M.-O. Bensalah, M. El Achaby, D. Rodrigue, R. Bouhfid, A. Qaiss, Characterization and numerical simulation of laminated glass fiber–polyester composites for a prosthetic running blade, J. Reinf. Plast. Compos. 40 (2021) 118–133.

DOI: 10.1177/0731684420949662

Google Scholar

[16] G. Zhou, H. Tang, Q. Sun, D. Li, Y. Peng, D. Zeng, X. Su, Analysis of the crushing behaviors of woven carbon fiber reinforced plastic hat section component under dynamic bending and axial crushing loading, Thin-Walled Struct. 161 (2021) 107426.

DOI: 10.1016/j.tws.2020.107426

Google Scholar

[17] K. Singh, D. Das, R.K. Nayak, S. Khandai, R. Kumar, B.C. Routara, Effect of silanization on mechanical and tribological properties of kenaf-carbon and kenaf-glass hybrid polymer composites, Mater. Today: Proc. 26 (2020) 2094–2098.

DOI: 10.1016/j.matpr.2020.02.452

Google Scholar

[18] N. Batra, I. Dikshit, Evaluation of mechanical properties of polytherimide reinforced carbon/glass/aramid hybrid composites, Mater. Today: Proc. 33 (2020) 1472–1476.

DOI: 10.1016/j.matpr.2020.02.009

Google Scholar

[19] O. Laban, G. Pearce, J. Zhang, M.S. Islam, L.P. Djukic, A comparative study of the cryogenic performance of CFRP composites with polyethersulfone/epoxy blends and electrospun polyethersulfone interleaves, Compos. Part A: Appl. Sci. Manuf. 178 (2024) 108000.

DOI: 10.1016/j.compositesa.2023.108000

Google Scholar

[20] S.S. Kavitha, L. Joseph, M.K. Madhavan, K. Jayanarayanan, Comparative study of carbon and glass fiber reinforced polymer composites for the confinement of concrete columns, Mater. Today: Proc. 103 (2024) 352–357.

DOI: 10.1016/j.matpr.2023.09.010

Google Scholar

[21] M.A.H. Sarker, M.S. Chowdhury, M.S. Oliullah, M.R. Ahmed, M.Z. Al Mahmud, H. Rahman, R.K. Roy, N. Hossain, Mechanical and morphological characterization of hybrid epoxy composites reinforced with agricultural waste fibers, SPE Polym. 6 (2025) e70016.

DOI: 10.1002/pls2.70016

Google Scholar

[22] M. Rajesh, J. Pitchaimani, Mechanical properties of natural fiber braided yarn woven composite: comparison with conventional yarn woven composite, J. Bionic Eng. 14 (2017) 141–150.

DOI: 10.1016/s1672-6529(16)60385-2

Google Scholar

[23] F. Radzi, M. Suriani, A.A. Bakar, A. Khalina, C. Ruzaidi, W.W. Nik, M. Awang, F. Zulkifli, S. Abdullah, R. Ilyas, Effect of reinforcement of alkaline-treated sugar palm/bamboo/kenaf and fiberglass/Kevlar with polyester hybrid biocomposites: mechanical, morphological, and water absorption properties, J. Mater. Res. Technol. 24 (2023) 4190–4202.

DOI: 10.1016/j.jmrt.2023.04.055

Google Scholar

[24] S. Agarwal, Y. Pai, D. Pai, G. Mahesha, Assessment of ageing effect on the mechanical and damping characteristics of thin quasi-isotropic hybrid carbon-Kevlar/epoxy intraply composites, Cogent Eng. 10 (2023) 2235111.

DOI: 10.1080/23311916.2023.2235111

Google Scholar

[25] K. Rahmani, G. Wheatley, A. Sadooghi, S.J. Hashemi, J. Babazadeh, The experimental investigation of hardness and wear behaviors of inner surface of the resin tubes reinforced by fibers, Results Eng. 11 (2021) 100273.

DOI: 10.1016/j.rineng.2021.100273

Google Scholar

[26] R. Bochare, R. Gidde, Experimental investigation of hardness value of coir fiber/epoxy resin composite, Int. J. Adv. Res. Ideas Innov. Technol. 3 (2017) 1505–1507.

Google Scholar