[1]
C. Klug, G. W. von Rymon Lipinski, and L. O'Brien Nabors, Acesulfame potassium, in Alternative Sweeteners, 4th ed., Boca Raton, FL: CRC Press, (2012) 13–30.
DOI: 10.1002/9781118373941.ch5
Google Scholar
[2]
T. Suami, L. Hough, T. Machinami, T. Saito, and K. Nakamura, Molecular mechanisms of sweet taste 8: saccharin, acesulfame-K, cyclamate and their derivatives, Food Chem., 63( 3)(1998) 391–396.
DOI: 10.1016/s0308-8146(97)00241-0
Google Scholar
[3]
J. C. Fry and A. C. Hoek, Aspartame-Acesulfame: Twinsweet, Food Science and Technology–New York: Marcel Dekker, (2001) 481–498.
Google Scholar
[4]
T. Yildirim and D. A. Köse, Investigation of the importance of acesulfamate as a ligand in coordination chemistry, J. Mol. Struct., (2025)142020.
DOI: 10.1016/j.molstruc.2025.142020
Google Scholar
[5]
H. İçbudak, A. Bulut, N. Çetin, and C. Kazak, Bis (acesulfamato) tetraaquacobalt (II), Cryst. Struct. Commun., 61(1)(2005)m1–m3.
DOI: 10.1107/s0108270104028574
Google Scholar
[6]
D. Rudan-Tasič, C. Klofutar, and M. Bešter-Rogač, The electric conductivities of aqueous solutions of rubidium and cesium cyclohexylsulfamates, potassium acesulfame and sodium saccharin, Acta Chimica Slovenica, 53(3) (2006).
DOI: 10.1007/s10953-008-9311-1
Google Scholar
[7]
M. Cavicchioli et al., Pt (II) and Ag (I) complexes with acesulfame: Crystal structure and a study of their antitumoral, antimicrobial and antiviral activities, Journal of Inorganic Biochemistry, 104(5)(2010)533–540.
DOI: 10.1016/j.jinorgbio.2010.01.004
Google Scholar
[8]
G. Demirtaş, N. Dege, H. İçbudak, Ö. Yurdakul, and O. Büyükgüngör, Experimental and DFT studies on poly [di-μ3-acesulfamato-O,O:O'; O':O,O-di-μ-acesulfamato-O,O; N-di-μ-aqua-dicalcium (II)] complex, J. Inorg. Organomet. Polym. Mater., 22(2012)671–679.
DOI: 10.1007/s10904-012-9679-7
Google Scholar
[9]
E. J. Baran, B. S. Parajón Costa, G. A. Echeverría, and O. E. Piro, Synthesis, structural and spectroscopic characterization of thallium (I) acesulfamate, Maced. J. Chem. Chem. Eng., 34(2015)95-100.
DOI: 10.20450/mjcce.2015.630
Google Scholar
[10]
H. İçbudak, G. Demirtaş, and N. Dege, Experimental and theoretical (DFT) studies on poly [octa-μ3-acesulfamato-O,O: N, Oʹ; Oʹ, N: O,O-tetraaquatetrabarium (II)] and poly [octa-μ3-acesulfamato-O,O: N, Oʹ; Oʹ, N: O, O-tetraaquatetrastrontium (II)] complexes, Maced. J. Chem. Chem. Eng, 34(1)(2015)105–114.
DOI: 10.20450/mjcce.2015.634
Google Scholar
[11]
Ö. Yurdakul, G. Demirtaş, N. Dege, H. İçbudak, D. A. Kose, and O. Büyükgüngör, Crystal structure, thermal analysis, spectroscopic studies and DFT calculations on hexaaquamagnesium II acesulfamate, Hacettepe J. Biol. Chem., 44(1)(2016) 95–106.
DOI: 10.15671/hjbc.20164417570
Google Scholar
[12]
M. Kocakoç, H. İçbudak, and R. Tapramaz, EPR spectroscopic investigation of Mn+2 acesulfam metal complex, [Mn(acs)2(H2O)4], Sinop Üniversitesi Fen Bilimleri Dergisi, 5(1)(2020)49–54.
DOI: 10.33484/sinopfbd.660660
Google Scholar
[13]
L. Zeybel and D. A. Köse, Acesulfame complex compounds of some lanthanide group metal cations. Synthesis and characterization, J. Mol. Struct., 1226(2021)129399.
DOI: 10.1016/j.molstruc.2020.129399
Google Scholar
[14]
T. Yildirim, D. A. Köse, G. A. Avci, O. Şahin, and F. Akkurt, Novel coordination compounds: Mn(II), Co(II), Ni(II), Cu(II), and Zn(II) cations with acesulfame/N, N-diethylnicotinamide ligands, J. Coord. Chem., 72(22–24)(2019) 3502–3517.
DOI: 10.1080/00958972.2019.1705970
Google Scholar
[15]
B. Boonseng, T. Khudkham, S. Wongsuwan, and J. Chatwichien, Anticancer activity of metal complexes with acesulfame mixed with triphenylphosphine ligands, CMU J Nat Sci, 18(4)(2019)427–443.
DOI: 10.12982/cmujns.2019.0029
Google Scholar
[16]
Ö. Yurdakul, D. A. Köse, O. Şahin, and G. A. Avcı, Two novel mixed-ligand zinc-acesulfame compounds: Synthesis, spectroscopic and thermal characterization and biological applications, J. Mol. Struct., 1203(2020)127265.
DOI: 10.1016/j.molstruc.2019.127265
Google Scholar
[17]
Z. S. Şahin, M. Demir, T. Yıldırım, Ö. Yurdakul, and D. A. Köse, Novel mixed ligand complexes of Co(II), Ni(II), Cu(II), and Zn(II) with 1,10-phenanthroline and acesulfame. Synthesis, structural analysis and hydrogen adsorption study, Int. J. Hydrogen Energy, 46(54) (2021)27631–27642.
DOI: 10.1016/j.ijhydene.2021.06.026
Google Scholar
[18]
O. Yurdakul and D. A. Kose, Mixed ligand complexes of acesulfame/nicotinamide with earth alkaline metal cations MgII, CaII, BaII and SrII: synthesis and characterization, Hittite J. Sci. Eng., 1 (1) (2014)51–57.
DOI: 10.17350/hjse19030000008
Google Scholar
[19]
Ö. Yurdakul, D. A. Köse, O. Şahin, and D. Özer, Mn(II) and Co(II) mixed-ligand coordination compounds with acesulfame and 3-aminopyridine: synthesis and structural properties, J. Coord. Chem.,74 (7) (2021)1168–1180.
DOI: 10.1080/00958972.2021.1888083
Google Scholar
[20]
L. Zeybel and D. A. Köse, Novel mixed ligand coordination compounds of some rare earth metal cations containing acesulfamato/N,N-diethylnicotinamide, Turk. J. Chem., 45(4)(2021)1004–1115.
DOI: 10.3906/kim-2012-47
Google Scholar
[21]
S. Kansız, A. Tolan, M. Azam, N. Dege, M. Alam, Y. Sert, ... and H. İçbudak, Acesulfame based Co(II) complex: Synthesis, structural investigations, solvatochromism, Hirshfeld surface analysis and molecular docking studies, Polyhedron, 218(2022)115762.
DOI: 10.1016/j.poly.2022.115762
Google Scholar
[22]
H. Kundakcı and D. A. Köse, Novel Al(III) and In(III) complexes containing acesulfame and nicotinamide/N,N-diethylnicotinamide ligands. Synthesis and structural characterization, Hitit J. Sci., 1(1) (2024)29–38.
Google Scholar
[23]
A. Bulut, H. İçbudak, G. Sezer, and C. Kazak, Bis (acesulfamato-κ2N3, O4) bis (2-aminopyrimidine-κN1) copper (II), Cry. Struct Commun., 61( 5)(2005)m228–m230.
DOI: 10.1107/s0108270105008188
Google Scholar
[24]
H. Icbudak, E. Adiyaman, A. Uyanik, and S. Cakir, Synthesis, characterization and chromotropic properties of MnII, CoII, NiII and CuII with bis (acesulfamato) bis (3-methylpyridine) complexes, Transit. Met. Chem., 32(7)(2007)864–869.
DOI: 10.1007/s11243-007-0226-2
Google Scholar
[25]
H. Icbudak, A. Uyanik, A. Bulut, C. Arici, and D. Uelkue, Synthesis, thermal, spectroscopic and structural properties of di(aqua) bis(N,N'-dimethylethylenediamine-κ2N,N') copper (II) acesulfamate, Zeitschrift für Kristallographie, 222, 8,2(8)(2007)432–436.
DOI: 10.1524/zkri.2007.222.8.432
Google Scholar
[26]
R. E. de Paiva, C. Abbehausen, A. F. Gomes, F. C. Gozzo, W. R. Lustri, A. L. Formiga, and P. P. Corbi, Synthesis, spectroscopic characterization, DFT studies and antibacterial assays of a novel silver (I) complex with the anti-inflammatory nimesulide, Polyhedron, 36(1) (2012)112–119.
DOI: 10.1016/j.poly.2012.02.002
Google Scholar
[27]
S. Kansız, A. Tolan, H. İçbudak, and N. Dege, Synthesis, crystallographic structure, theoretical calculations, spectral and thermal properties of trans-diaquabis (trans-4-aminoantipyrine) cobalt (II) acesulfamate, J. Mol. Struct., 1190(2019)102–115.
DOI: 10.1016/j.molstruc.2019.04.058
Google Scholar
[28]
L. Zeybel and D. A. Köse, New mixed ligand complexes of lanthanide metal cations containing acesulfame/nicotinamide. Synthesis and structural characterizations, J. Mol. Struct., 1290(2023)135979.
DOI: 10.1016/j.molstruc.2023.135979
Google Scholar
[29]
A. S. Faihan, T. A. Yousef, I. F. Alshdoukhi, M. Ashfaq, A. S. Al-Janabi, R. Behjatmanesh-Ardakani, ... and C. Wagner, Synthesis, characterization and biological activity of Pt(II) acesulfame with triphenylphosphine or bipyridine. Crystal structure, Hirshfield and DFT studies of [Pt(ACS)Cl(PPh3)], J. Mol. Struct., 1341(2025)142637.
DOI: 10.1016/j.molstruc.2025.142637
Google Scholar
[30]
B. Bonev, J. Hooper, and J. Parisot, Principles of assessing bacterial susceptibility to antibiotics using the agar diffusion method, J Antimicrob Chemother., 61(6)(2008)1295–1301.
DOI: 10.1093/jac/dkn090
Google Scholar
[31]
A. S. M. Al-Janabi, H. B. Abdullah, and S. A. Al-Jibori, Synthesis, crystal structure and spectral studies of mercury (II) complexes containing the mixed ligands benz-1,3-imidazoline-2-thione, benz-1,3-oxazoline-2-thione, benz-1,3-thiazoline-2-thione, and diphosphine, Orient. J. Chem., 25(2)(2009)2009.
DOI: 10.1007/s11243-006-0108-z
Google Scholar
[32]
A. S. Al-Janabi, Synthesis, characterization and study of mercury (II) complexes with phosphine and heterocyclic thiones, Tikrit J. Pure Sci., 20(4)(2015)67-72.
DOI: 10.25130/tjps.v20i4.1215
Google Scholar
[33]
O. A. A. Al-Samrai, O. R. A. Samarrai, T. A. Yousef, M. M. Abou-Krisha, M. H. Alhalafi, and A. S. Al-Janabi, Synthesis, spectroscopic, DFT, anticancer evaluation and enzyme inhibition studies of platinum (II) complexes with 1-methyl-1H-1,2,3,4-tetrazole-5-thiol and phosphine ligands: Crystal structure of [Pt(mtzt)2(dppe)], Chemical Physics Impact, 8(2024) 100581.
DOI: 10.1016/j.chphi.2024.100581
Google Scholar
[34]
O. D. Al-Mouqdady, A. S. Al-Janabi, M. R. Hatshan, S. A. Al-Jibori, A. S. Fiahan, and C. Wagner, Synthesis, characterization, anti-bacterial and anticancer activities of Palladium (II) mixed ligand complexes of 2-mercapto-5-methyl-1,3,4-thiadiazole (HmtzS) and phosphines. Crystal structure of [Pd(mtzS)2(dppf)]. H2O. EtOH, J. Mol. Struct., 1264 (2022) 133219.
DOI: 10.1016/j.molstruc.2022.133219
Google Scholar
[35]
A. S. Al-Janabi, H. M. Jerjes, and M. H. Salah, Synthesis and characterization of new metal complexes of thione and phosphines ligands, Tikrit Journal of Pure Science, 22(9)(2017)53–57.
DOI: 10.25130/tjps.v22i9.875
Google Scholar
[36]
A. A. Hameed, A. S. Al-Janabi, S. A. Al-Jibori, M. A. Alheety, and P. K. Singh, Exploration of novel phenyl mercury tetrazole-thione complexes: characterization and investigating the impact of diamine ligands on enhanced hydrogen storage, Energy Storage, 6(2)(2024) e598.
DOI: 10.1002/est2.598
Google Scholar
[37]
R. A. Nyquist, and R. O. Kagel, Handbook of infrared and Raman spectra of inorganic compounds and organic salts: infrared spectra of inorganic compounds, Academic Press, Vol. 4, (2012).
DOI: 10.1016/b978-0-12-523450-4.50005-5
Google Scholar
[38]
E. Etebu and I. Arikekpar, Antibiotics: Classification and mechanisms of action with emphasis on molecular perspectives, Int. J. Appl. Microbiol. Biotechnol. Res., 4(2016) 90–101.
Google Scholar
[39]
T. Yıldırım, D. A. Köse, E. Avcı, D. Özer, and O. Şahin, Novel mixed ligand complexes of acesulfame/nicotinamide with some transition metals. Synthesis, crystal structural characterization, and biological properties, J. Mol. Struct., 1176(2019) 576–582.
DOI: 10.1016/j.molstruc.2018.08.099
Google Scholar
[40]
A. Sirelkhatim, S. Mahmud, A. Seeni, N. H. M. Kaus, L. C. Ann, S. K. M. Bakhori, and D. Mohamad, Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism, Nano-Micro Letters, 7(3)(2015) 219-242.
DOI: 10.1007/s40820-015-0040-x
Google Scholar
[41]
G. Dilarri, C. F. Forsan, V. de M. R. Sapata, P. R. M. Lopes, P. B. de Moraes, R. N. Montagnolli, H. Ferreira, E. D. Bidoia Antibacterial action and target mechanisms of zinc oxide nanoparticles against bacterial pathogens, Scientific Reports, 12(2022) 2658.
DOI: 10.1038/s41598-022-06657-y
Google Scholar