Zinc(II) Mixed Ligand Complexes of Acesulfame and Thiones: Structural Characterization and Biological Activity

Article Preview

Abstract:

Acesulfame, with its oxathiazinone ring and potential coordination sites, acts as a ligand in forming complexes with various metal ions. According to this point, this study includes the synthesis and characterization of novel zinc(II) complexes incorporating acesulfame (acs) with various thione-containing ligands: 2-mercaptobenzothiazole (bztSH), 2-mercapto-benzimidazole (bizmSH), 2-mercaptobenzoxazole (bzoxSH), 1,3-dihydro-2H-imidazole-2-thione (imSH), and 5-(p-tolyl)oxazole-2(3H)-thione (mphtSH). The synthesized complexes, identified as [Zn(acs)₂(bztSH)₂] (1), [Zn(acs)₂(bizmSH)₂] (2), [Zn(acs)₂(bzoxSH)]₂ (3), [Zn(acs)₂(imSH)₂] (4), and [Zn(mphtS)₂] (5), were structurally elucidated using CHN analysis, nuclear magnetic resonance (NMR) spectroscopy, infrared (IR) spectroscopy, and molar conductivity measurements. Results indicate that the acesulfame ligand coordinates as a monodentate ligand via its nitrogen atom in complexes (1-4). In complex (1), the bztSH ligand coordinates in a monodentate mode through the nitrogen atom of its heterocyclic ring. Conversely, in complexes (2) and (4), bizmSH and imSH coordinate as monodentate ligands via their sulfur atoms. Complex (3) is a binuclear species where bzoxSH coordinates as a bidentate ligand through both its nitrogen and sulfur atoms. Notably, in complex (5) , the mphtSH ligand displaces acesulfame, coordinating as a bidentate ligand through its nitrogen and sulfur atoms. Furthermore, the antibacterial activities of these complexes were evaluated against Staphylococcus aureus and Escherichia coli. Complexes (4) and (1) demonstrated the highest efficacy. The [Zn(acs)₂(imSH)₂] (4) exhibited inhibition efficiencies of 74% and 79% with inhibition zones of 20 mm and 23 mm against S. aureus and E. coli, respectively. Similarly, [Zn(acs)₂(bztSH)₂] (1) showed inhibition efficiencies of 70% and 76% with inhibition zones of 19 mm and 22 mm against S. aureus and E. coli, respectively.

You might also be interested in these eBooks

Info:

Pages:

17-32

Citation:

Online since:

February 2026

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2026 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C. Klug, G. W. von Rymon Lipinski, and L. O'Brien Nabors, Acesulfame potassium, in Alternative Sweeteners, 4th ed., Boca Raton, FL: CRC Press, (2012) 13–30.

DOI: 10.1002/9781118373941.ch5

Google Scholar

[2] T. Suami, L. Hough, T. Machinami, T. Saito, and K. Nakamura, Molecular mechanisms of sweet taste 8: saccharin, acesulfame-K, cyclamate and their derivatives, Food Chem., 63( 3)(1998) 391–396.

DOI: 10.1016/s0308-8146(97)00241-0

Google Scholar

[3] J. C. Fry and A. C. Hoek, Aspartame-Acesulfame: Twinsweet, Food Science and Technology–New York: Marcel Dekker, (2001) 481–498.

Google Scholar

[4] T. Yildirim and D. A. Köse, Investigation of the importance of acesulfamate as a ligand in coordination chemistry, J. Mol. Struct., (2025)142020.

DOI: 10.1016/j.molstruc.2025.142020

Google Scholar

[5] H. İçbudak, A. Bulut, N. Çetin, and C. Kazak, Bis (acesulfamato) tetraaquacobalt (II), Cryst. Struct. Commun., 61(1)(2005)m1–m3.

DOI: 10.1107/s0108270104028574

Google Scholar

[6] D. Rudan-Tasič, C. Klofutar, and M. Bešter-Rogač, The electric conductivities of aqueous solutions of rubidium and cesium cyclohexylsulfamates, potassium acesulfame and sodium saccharin, Acta Chimica Slovenica, 53(3) (2006).

DOI: 10.1007/s10953-008-9311-1

Google Scholar

[7] M. Cavicchioli et al., Pt (II) and Ag (I) complexes with acesulfame: Crystal structure and a study of their antitumoral, antimicrobial and antiviral activities, Journal of Inorganic Biochemistry, 104(5)(2010)533–540.

DOI: 10.1016/j.jinorgbio.2010.01.004

Google Scholar

[8] G. Demirtaş, N. Dege, H. İçbudak, Ö. Yurdakul, and O. Büyükgüngör, Experimental and DFT studies on poly [di-μ3-acesulfamato-O,O:O'; O':O,O-di-μ-acesulfamato-O,O; N-di-μ-aqua-dicalcium (II)] complex, J. Inorg. Organomet. Polym. Mater., 22(2012)671–679.

DOI: 10.1007/s10904-012-9679-7

Google Scholar

[9] E. J. Baran, B. S. Parajón Costa, G. A. Echeverría, and O. E. Piro, Synthesis, structural and spectroscopic characterization of thallium (I) acesulfamate, Maced. J. Chem. Chem. Eng., 34(2015)95-100.

DOI: 10.20450/mjcce.2015.630

Google Scholar

[10] H. İçbudak, G. Demirtaş, and N. Dege, Experimental and theoretical (DFT) studies on poly [octa-μ3-acesulfamato-O,O: N, Oʹ; Oʹ, N: O,O-tetraaquatetrabarium (II)] and poly [octa-μ3-acesulfamato-O,O: N, Oʹ; Oʹ, N: O, O-tetraaquatetrastrontium (II)] complexes, Maced. J. Chem. Chem. Eng, 34(1)(2015)105–114.

DOI: 10.20450/mjcce.2015.634

Google Scholar

[11] Ö. Yurdakul, G. Demirtaş, N. Dege, H. İçbudak, D. A. Kose, and O. Büyükgüngör, Crystal structure, thermal analysis, spectroscopic studies and DFT calculations on hexaaquamagnesium II acesulfamate, Hacettepe J. Biol. Chem., 44(1)(2016) 95–106.

DOI: 10.15671/hjbc.20164417570

Google Scholar

[12] M. Kocakoç, H. İçbudak, and R. Tapramaz, EPR spectroscopic investigation of Mn+2 acesulfam metal complex, [Mn(acs)2(H2O)4], Sinop Üniversitesi Fen Bilimleri Dergisi, 5(1)(2020)49–54.

DOI: 10.33484/sinopfbd.660660

Google Scholar

[13] L. Zeybel and D. A. Köse, Acesulfame complex compounds of some lanthanide group metal cations. Synthesis and characterization, J. Mol. Struct., 1226(2021)129399.

DOI: 10.1016/j.molstruc.2020.129399

Google Scholar

[14] T. Yildirim, D. A. Köse, G. A. Avci, O. Şahin, and F. Akkurt, Novel coordination compounds: Mn(II), Co(II), Ni(II), Cu(II), and Zn(II) cations with acesulfame/N, N-diethylnicotinamide ligands, J. Coord. Chem., 72(22–24)(2019) 3502–3517.

DOI: 10.1080/00958972.2019.1705970

Google Scholar

[15] B. Boonseng, T. Khudkham, S. Wongsuwan, and J. Chatwichien, Anticancer activity of metal complexes with acesulfame mixed with triphenylphosphine ligands, CMU J Nat Sci, 18(4)(2019)427–443.

DOI: 10.12982/cmujns.2019.0029

Google Scholar

[16] Ö. Yurdakul, D. A. Köse, O. Şahin, and G. A. Avcı, Two novel mixed-ligand zinc-acesulfame compounds: Synthesis, spectroscopic and thermal characterization and biological applications, J. Mol. Struct., 1203(2020)127265.

DOI: 10.1016/j.molstruc.2019.127265

Google Scholar

[17] Z. S. Şahin, M. Demir, T. Yıldırım, Ö. Yurdakul, and D. A. Köse, Novel mixed ligand complexes of Co(II), Ni(II), Cu(II), and Zn(II) with 1,10-phenanthroline and acesulfame. Synthesis, structural analysis and hydrogen adsorption study, Int. J. Hydrogen Energy, 46(54) (2021)27631–27642.

DOI: 10.1016/j.ijhydene.2021.06.026

Google Scholar

[18] O. Yurdakul and D. A. Kose, Mixed ligand complexes of acesulfame/nicotinamide with earth alkaline metal cations MgII, CaII, BaII and SrII: synthesis and characterization, Hittite J. Sci. Eng., 1 (1) (2014)51–57.

DOI: 10.17350/hjse19030000008

Google Scholar

[19] Ö. Yurdakul, D. A. Köse, O. Şahin, and D. Özer, Mn(II) and Co(II) mixed-ligand coordination compounds with acesulfame and 3-aminopyridine: synthesis and structural properties, J. Coord. Chem.,74 (7) (2021)1168–1180.

DOI: 10.1080/00958972.2021.1888083

Google Scholar

[20] L. Zeybel and D. A. Köse, Novel mixed ligand coordination compounds of some rare earth metal cations containing acesulfamato/N,N-diethylnicotinamide, Turk. J. Chem., 45(4)(2021)1004–1115.

DOI: 10.3906/kim-2012-47

Google Scholar

[21] S. Kansız, A. Tolan, M. Azam, N. Dege, M. Alam, Y. Sert, ... and H. İçbudak, Acesulfame based Co(II) complex: Synthesis, structural investigations, solvatochromism, Hirshfeld surface analysis and molecular docking studies, Polyhedron, 218(2022)115762.

DOI: 10.1016/j.poly.2022.115762

Google Scholar

[22] H. Kundakcı and D. A. Köse, Novel Al(III) and In(III) complexes containing acesulfame and nicotinamide/N,N-diethylnicotinamide ligands. Synthesis and structural characterization, Hitit J. Sci., 1(1) (2024)29–38.

Google Scholar

[23] A. Bulut, H. İçbudak, G. Sezer, and C. Kazak, Bis (acesulfamato-κ2N3, O4) bis (2-aminopyrimidine-κN1) copper (II), Cry. Struct Commun., 61( 5)(2005)m228–m230.

DOI: 10.1107/s0108270105008188

Google Scholar

[24] H. Icbudak, E. Adiyaman, A. Uyanik, and S. Cakir, Synthesis, characterization and chromotropic properties of MnII, CoII, NiII and CuII with bis (acesulfamato) bis (3-methylpyridine) complexes, Transit. Met. Chem., 32(7)(2007)864–869.

DOI: 10.1007/s11243-007-0226-2

Google Scholar

[25] H. Icbudak, A. Uyanik, A. Bulut, C. Arici, and D. Uelkue, Synthesis, thermal, spectroscopic and structural properties of di(aqua) bis(N,N'-dimethylethylenediamine-κ2N,N') copper (II) acesulfamate, Zeitschrift für Kristallographie, 222, 8,2(8)(2007)432–436.

DOI: 10.1524/zkri.2007.222.8.432

Google Scholar

[26] R. E. de Paiva, C. Abbehausen, A. F. Gomes, F. C. Gozzo, W. R. Lustri, A. L. Formiga, and P. P. Corbi, Synthesis, spectroscopic characterization, DFT studies and antibacterial assays of a novel silver (I) complex with the anti-inflammatory nimesulide, Polyhedron, 36(1) (2012)112–119.

DOI: 10.1016/j.poly.2012.02.002

Google Scholar

[27] S. Kansız, A. Tolan, H. İçbudak, and N. Dege, Synthesis, crystallographic structure, theoretical calculations, spectral and thermal properties of trans-diaquabis (trans-4-aminoantipyrine) cobalt (II) acesulfamate, J. Mol. Struct., 1190(2019)102–115.

DOI: 10.1016/j.molstruc.2019.04.058

Google Scholar

[28] L. Zeybel and D. A. Köse, New mixed ligand complexes of lanthanide metal cations containing acesulfame/nicotinamide. Synthesis and structural characterizations, J. Mol. Struct., 1290(2023)135979.

DOI: 10.1016/j.molstruc.2023.135979

Google Scholar

[29] A. S. Faihan, T. A. Yousef, I. F. Alshdoukhi, M. Ashfaq, A. S. Al-Janabi, R. Behjatmanesh-Ardakani, ... and C. Wagner, Synthesis, characterization and biological activity of Pt(II) acesulfame with triphenylphosphine or bipyridine. Crystal structure, Hirshfield and DFT studies of [Pt(ACS)Cl(PPh3)], J. Mol. Struct., 1341(2025)142637.

DOI: 10.1016/j.molstruc.2025.142637

Google Scholar

[30] B. Bonev, J. Hooper, and J. Parisot, Principles of assessing bacterial susceptibility to antibiotics using the agar diffusion method, J Antimicrob Chemother., 61(6)(2008)1295–1301.

DOI: 10.1093/jac/dkn090

Google Scholar

[31] A. S. M. Al-Janabi, H. B. Abdullah, and S. A. Al-Jibori, Synthesis, crystal structure and spectral studies of mercury (II) complexes containing the mixed ligands benz-1,3-imidazoline-2-thione, benz-1,3-oxazoline-2-thione, benz-1,3-thiazoline-2-thione, and diphosphine, Orient. J. Chem., 25(2)(2009)2009.

DOI: 10.1007/s11243-006-0108-z

Google Scholar

[32] A. S. Al-Janabi, Synthesis, characterization and study of mercury (II) complexes with phosphine and heterocyclic thiones, Tikrit J. Pure Sci., 20(4)(2015)67-72.

DOI: 10.25130/tjps.v20i4.1215

Google Scholar

[33] O. A. A. Al-Samrai, O. R. A. Samarrai, T. A. Yousef, M. M. Abou-Krisha, M. H. Alhalafi, and A. S. Al-Janabi, Synthesis, spectroscopic, DFT, anticancer evaluation and enzyme inhibition studies of platinum (II) complexes with 1-methyl-1H-1,2,3,4-tetrazole-5-thiol and phosphine ligands: Crystal structure of [Pt(mtzt)2(dppe)], Chemical Physics Impact, 8(2024) 100581.

DOI: 10.1016/j.chphi.2024.100581

Google Scholar

[34] O. D. Al-Mouqdady, A. S. Al-Janabi, M. R. Hatshan, S. A. Al-Jibori, A. S. Fiahan, and C. Wagner, Synthesis, characterization, anti-bacterial and anticancer activities of Palladium (II) mixed ligand complexes of 2-mercapto-5-methyl-1,3,4-thiadiazole (HmtzS) and phosphines. Crystal structure of [Pd(mtzS)2(dppf)]. H2O. EtOH, J. Mol. Struct., 1264 (2022) 133219.

DOI: 10.1016/j.molstruc.2022.133219

Google Scholar

[35] A. S. Al-Janabi, H. M. Jerjes, and M. H. Salah, Synthesis and characterization of new metal complexes of thione and phosphines ligands, Tikrit Journal of Pure Science, 22(9)(2017)53–57.

DOI: 10.25130/tjps.v22i9.875

Google Scholar

[36] ‏A. A. Hameed, A. S. Al-Janabi, S. A. Al-Jibori, M. A. Alheety, and P. K. Singh, Exploration of novel phenyl mercury tetrazole-thione complexes: characterization and investigating the impact of diamine ligands on enhanced hydrogen storage, Energy Storage, 6(2)(2024) e598.

DOI: 10.1002/est2.598

Google Scholar

[37] R. A. Nyquist, and R. O. Kagel, Handbook of infrared and Raman spectra of inorganic compounds and organic salts: infrared spectra of inorganic compounds, Academic Press, Vol. 4, (2012).

DOI: 10.1016/b978-0-12-523450-4.50005-5

Google Scholar

[38] E. Etebu and I. Arikekpar, Antibiotics: Classification and mechanisms of action with emphasis on molecular perspectives, Int. J. Appl. Microbiol. Biotechnol. Res., 4(2016) 90–101.

Google Scholar

[39] T. Yıldırım, D. A. Köse, E. Avcı, D. Özer, and O. Şahin, Novel mixed ligand complexes of acesulfame/nicotinamide with some transition metals. Synthesis, crystal structural characterization, and biological properties, J. Mol. Struct., 1176(2019) 576–582.

DOI: 10.1016/j.molstruc.2018.08.099

Google Scholar

[40] A. Sirelkhatim, S. Mahmud, A. Seeni, N. H. M. Kaus, L. C. Ann, S. K. M. Bakhori, and D. Mohamad, Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism, Nano-Micro Letters, 7(3)(2015) 219-242.

DOI: 10.1007/s40820-015-0040-x

Google Scholar

[41] G. Dilarri, C. F. Forsan, V. de M. R. Sapata, P. R. M. Lopes, P. B. de Moraes, R. N. Montagnolli, H. Ferreira, E. D. Bidoia Antibacterial action and target mechanisms of zinc oxide nanoparticles against bacterial pathogens, Scientific Reports, 12(2022) 2658.

DOI: 10.1038/s41598-022-06657-y

Google Scholar