[1]
C. Huang, et al., Biomechanical assessment of residual limb stress distributions in transtibial amputees: A finite element approach, J. Biomech. 92 (2019) 45–52.
Google Scholar
[2]
S. Portnoy, et al., Finite element analysis of the amputated lower limb: Implications for prosthetic design, Med. Eng. Phys. 31(6) (2009) 650–659.
Google Scholar
[3]
J.E. Sanders, et al., Material properties of soft tissues in the residual limb: Clinical implications for prosthetic socket design, J. Rehabil. Res. Dev. 35(2) (1998) 161–171.
Google Scholar
[4]
A.F. Mak, et al., Prosthetic socket interface: Biomechanical considerations, Crit. Rev. Biomed. Eng. 29(1) (2001) 1–23.
Google Scholar
[5]
M.B. Silver-Thorn, D.S. Childress, Parametric analysis using finite element modeling of the below-knee residual limb/prosthetic socket interface, J. Rehabil. Res. Dev. 33(3) (1996) 227–238.
Google Scholar
[6]
F. Hadžikadunić, A. Mujkanović, N. Vukojević, et al., Numerical analysis of the construction integrity on the example of a prosthetic device, IOP Conf. Ser. Mater. Sci. Eng. 012002 (2023).
DOI: 10.1088/1757-899x/1298/1/012002
Google Scholar
[7]
M.S. Jamaludin, A. Hanafusa, S. Yamamoto, et al., Analysis of pressure distribution in transfemoral prosthetic socket for prefabrication evaluation via the finite element method, Bioengineering 6(4) (2019) 98.
DOI: 10.3390/bioengineering6040098
Google Scholar
[8]
M.L. Sampaio de Oliveira, Finite element modelling of residual limb and transtibial prosthesis socket to predict interfacial pressure considering muscle contraction, Doctoral dissertation, University of Ottawa (2025).
DOI: 10.1007/s10439-025-03742-x
Google Scholar
[9]
T. Dumbleton, et al., Dynamic interface pressure distributions of two transtibial prosthetic socket designs, J. Rehabil. Res. Dev. 46(3) (2009) 405–415.
Google Scholar
[10]
G.R. Gubbala, R. Inala, Design and development of patient-specific prosthetic socket for lower limb amputation, Mater. Sci. Eng. Appl. 1(2) (2021) 32–42.
DOI: 10.21595/msea.2021.22012
Google Scholar
[11]
M. Zhang, A.F.T. Mak, In vivo friction properties of human skin, Prosthet. Orthot. Int. 23(2) (1999) 135–141.
Google Scholar
[12]
M.W. Legro, et al., Issues of importance reported by persons with lower limb amputations and prostheses, J. Rehabil. Res. Dev. 36(3) (1999) 155–163.
Google Scholar
[13]
I. Boudjemaa, A. Sahli, A. Benkhettou, et al., Preliminary results on the effects of orthopedic implant stiffness fixed to the cut end of the femur on the stress at the stump–prosthetic interface, Fract. Struct. Integr. 15(57) (2021) 160–168.
DOI: 10.3221/igf-esis.57.13
Google Scholar
[14]
T. Messaad, A. Baltach, M.E.S. Zagane, et al., Biomechanical analysis of prosthetic liners in transfemoral amputees using finite element modeling, J. Braz. Soc. Mech. Sci. Eng. 47(2) (2025) 59.
DOI: 10.1007/s40430-024-05362-3
Google Scholar
[15]
H.U. Rehman, S. Saleem, S. Javeed, et al., Development and durability of prosthetic liner for transtibial amputee, Insights – J. Health Rehabil. 3(3) (2025) 111–118.
DOI: 10.71000/wsb9nr65
Google Scholar
[16]
J.A. Velez Zea, L.M. Bustamante Goez, J.A. Villarraga Ossa, Relation between residual limb length and stress distribution over stump for transfemoral amputees, Rev. EIA 23 (2015) 107–115.
Google Scholar
[17]
W.C.C. Lee, M. Zhang, X. Jia, J.T.M. Cheung, Finite element modeling of the contact interface between trans-tibial residual limb and prosthetic socket, Med. Eng. Phys. 26(8) (2004) 655–662.
DOI: 10.1016/j.medengphy.2004.04.010
Google Scholar
[18]
C.C. Lin, C.H. Chang, C.L. Wu, K.C. Chung, I.C. Liao, Effects of liner stiffness for trans-tibial prosthesis: A finite element contact model, Med. Eng. Phys. 26(1) (2004) 1–9.
DOI: 10.1016/s1350-4533(03)00127-9
Google Scholar
[19]
D. Lacroix, J.F. Ramírez Patino, Finite element analysis of donning procedure of a prosthetic transfemoral socket, Ann. Biomed. Eng. 39(12) (2011) 2972–2983.
DOI: 10.1007/s10439-011-0389-z
Google Scholar
[20]
A.S. Dickinson, J.W. Steer, P.R. Worsley, Finite element analysis of the amputated lower limb: A systematic review and recommendations, Med. Eng. Phys. 43 (2017) 1–18.
DOI: 10.1016/j.medengphy.2017.02.008
Google Scholar
[21]
R. Surapureddy, A. Schonning, S. Stagon, A. Kassab, Predicting pressure distribution between transfemoral prosthetic socket and residual limb using finite element analysis, Int. J. Exp. Comput. Biomech. 4(1) (2016) 32–48.
DOI: 10.1504/ijecb.2016.081746
Google Scholar
[22]
J.W. Steer, P.A. Grudniewski, M. Browne, P.R. Worsley, A.J. Sobey, A.S. Dickinson, Predictive prosthetic socket design: part 2—generating person-specific candidate designs using multi-objective genetic algorithms, Biomech. Model. Mechanobiol. 19(4) (2020) 1347–1360.
DOI: 10.1007/s10237-019-01258-7
Google Scholar
[23]
I. Boudjemaa, O. Khatir, A. Hamada, A. Benkhettou, A. Sahli, Y. Abdoune, D. Ghali, Enhanced orthopedic implant design for transfemoral amputation incorporating a honeycomb structure technology, Mech. Adv. Mater. Struct. (2024) 1–7.
DOI: 10.1080/15376494.2024.2394988
Google Scholar
[24]
L. Zhang, M. Zhu, L. Shen, et al., Finite element analysis of the contact interface between trans-femoral stump and prosthetic socket, Proc. IEEE Eng. Med. Biol. Soc. (EMBC) (2013) 1270–1273.
DOI: 10.1109/embc.2013.6609739
Google Scholar
[25]
Z. Meng, D.W.-C. Wong, M. Zhang, et al., Analysis of compression/release stabilized transfemoral prosthetic socket by finite element modelling method, Med. Eng. Phys. 83 (2020) 123–129.
DOI: 10.1016/j.medengphy.2020.05.007
Google Scholar
[26]
J.C. Cagle, P.G. Reinhall, K.J. Allyn, et al., A finite element model to assess transtibial prosthetic sockets with elastomeric liners, Med. Biol. Eng. Comput. 56 (2018) 1227–1240.
DOI: 10.1007/s11517-017-1758-z
Google Scholar