[1]
OMS. (2022). Global strategy and action plan on ageing and health. https://www.who.int/publications/i/item/9789241513500
Google Scholar
[2]
OMS. (2021, abril 26). Falls. https://www.who.int/news-room/fact-sheets/detail/falls
Google Scholar
[3]
Landi, F., Sieber, C., Fielding, R. A., Rolland, Y., and Guralnik, J. (2018). Nutritional Intervention in Sarcopenia: Report from the International Conference on Frailty and Sarcopenia Research Task Force. The Journal of Frailty & Aging, 7(4), 247-252
DOI: 10.14283/jfa.2017.26
Google Scholar
[4]
Larsson, L., Degens, H., Li, M., Salviati, L., Lee, Y. il, Thompson, W., Kirkland, J. L., and Sandri, M. (2018). Sarcopenia: Aging-Related Loss of Muscle Mass and Function. Physiological Reviews, 99(1), 427
DOI: 10.1152/physrev.00061.2017
Google Scholar
[5]
Assi, S., Zhang, W., Carey, J., Deal, J., Huang, A., Oh, E., Martinez-Amezcua, P., Reed, N. (2023). The association of hearing loss with frailty among community-dwelling older adults: Findings from the National Health and Aging Trends Study. The National Health and Aging Trends Study, 23(754)
DOI: 10.1186/s12877-023-04465-1
Google Scholar
[6]
Y. Li, W. Zhang, H. Ma, F. Chen, D. Sun, X. Cheng, Y. Zheng, Z. Wang, S. Cai. (2023). Posture Detection Based on Kinect and YOLO Technologies. 2023 5th International Conference on Robotics, Intelligent Control and Artificial Intelligence (RICAI), 205-209
DOI: 10.1109/RICAI60863.2023.10489539
Google Scholar
[7]
Izquierdo, M. (2017). The Strategy for the Promotion of Health and Quality of Life in the European Union https://vivifrail.com
Google Scholar
[8]
Ma, B., Yang, J., Wong, F. K. Y., Wong, A. K. C., Ma, T., Meng, J., Zhao, Y., Wang, Y., and Lu, Q. (2023). Artificial intelligence in elderly healthcare: A scoping review. Ageing Research Reviews, 83, 101808
DOI: 10.1016/j.arr.2022.101808
Google Scholar
[9]
Zahedian-Nasab, N., Jaberi, A., Shirazi, F., and Kavousipor, S. (2021). Effect of virtual reality exercises on balance and fall in elderly people with fall risk: A randomized controlled trial. BMC Geriatrics, 21(1), 509
DOI: 10.1186/s12877-021-02462-w
Google Scholar
[10]
Villalba, E., de Antonio, A., and Laosa, O. (2022). Computational ecosystem with motivational support and functional assessment for an autonomous exercise program for healthy aging (MOTIVA). Ministry of Science and Innovation.https://ageinglab.ctb.upm.es/en/motiva/
Google Scholar
[11]
Wang, S., Zhang, J., Zhang, X., Han, X., Chen, J., Hong, Z., Wang, C., and Zhao, H. (2024). Lightweight fall detection system based on Orangepi 5B. Ninth International Symposium on Sensors, Mechatronics, and Automation System (ISSMAS 2023), 12981, 539-544
DOI: 10.1117/12.3015158
Google Scholar
[12]
Piculell, E., Skär, L., Sanmartin Berglund, J., Anderberg, P., and Bohman, D. (2021). A concept analysis of health communication in a home environment: Perspectives of older persons and their informal caregivers. Scandinavian Journal of Caring Sciences, 35(3), 1006-1024
DOI: 10.1111/scs.12928
Google Scholar
[13]
Yeh, Shen, W.-C., Ma, C.-W., Yeh, Q.-T., Kuo, C.-W., and Chen, J.-S. (2023). Real-time Human Movement Recognition and Interaction in Virtual Fitness using Image Recognition and Motion Analysis. 2023 12th International Conference on Awareness Science and Technology (iCAST), 242-246
DOI: 10.1109/iCAST57874.2023.10359266
Google Scholar
[14]
K. Aarthy, and A. A. Nithys. (2023). Yoga Pose Detection and Identification Using MediaPipe and OpenPose Model. 2023 International Conference on Computer Science and Emerging Technologies (CSET), 1-7
DOI: 10.1109/CSET58993.2023.10346786
Google Scholar
[15]
Wang, C., Ravi, D., Deligianni, F., Berthelot, M., Andreu-Perez, J., Lo, B., and Yang, G.-Z. (2017). Deep Learning for health informatics. IEEE Journal of Biomedical and Health Informatics
DOI: 10.1109/JBHI.2016.2636665
Google Scholar
[16]
Ullrich, L., Buchholz, M., Dietmayer, K., & Graichen, K. (2025). Expanding the Classical V-Model for the Development of Complex Systems Incorporating AI. arXiv preprint arXiv:2502.13184
DOI: 10.1109/tiv.2024.3434515
Google Scholar
[17]
Chen, H., & Fan, R. (2025). Improved convolutional neural network for precise exercise posture recognition and intelligent health indicator prediction. Scientific Reports, 15(1), 21309
DOI: 10.1038/s41598-025-01854-x
Google Scholar
[18]
Kosaraju, D. (2025). Computer Vision for Posture and Gait Analysis in Physical Therapy: Enhancing Motion Assessment Using Deep Learning. International Journal of Artificial Intelligence in Medicine (IJAIMED), 3(1), 33–42
DOI: 10.34218/IJAIMED_03_01_003
Google Scholar
[19]
Wagh, V., Scott, M. W., & Kraeutner, S. N. (2024). Quantifying Similarities Between MediaPipe and a Known Standard to Address Issues in Tracking 2D Upper Limb Trajectories: Proof of Concept Study. JMIR Formative Research, 8, e56682
DOI: 10.2196/56682
Google Scholar
[20]
Shang, M., Dedeyne, L., Dupont, J., Vercauteren, L., Amini, N., Lapauw, L., Gielen, E., Verschueren, S., Varon, C., De Raedt, W., & Vanrumste, B. (2024). Otago Exercises Monitoring for Older Adults by a Single IMU and Hierarchical Machine Learning Models. arXiv preprint arXiv:2310.03513.
DOI: 10.1109/tnsre.2024.3355299
Google Scholar
[21]
García-de-Villa, S., Casillas-Pérez, D., Jiménez-Martín, A., & García-Domínguez, J. J. (2024). Simultaneous exercise recognition and evaluation in prescribed routines: Approach to virtual coaches. arXiv preprint arXiv:2401.12857.
DOI: 10.1016/j.eswa.2022.116990
Google Scholar