[1]
Le-Yi Zhang, Qing Bi, Chen Zhao, Jin-Yang Chen, Mao-Hua Cai, Xiao-Yi Chen. Recent Advances in Biomaterials for the Treatment of Bone Defects. (2020). 6(4):113–125
DOI: 10.1080/15476278.2020.1808428
Google Scholar
[2]
Einhorn TA. Clinical Applications of Recombinant Human BMPs: Early Experience and Future Development. J Bone Joint Surg Am. (2003). 85:82–88. [PubMed: 12925614]
DOI: 10.2106/00004623-200300003-00014
Google Scholar
[3]
Biomaterials for bone tissue engineering: achievements to date and future directions. Garimella A, Ghosh SB, Bandyopadhyay-Ghosh S. Biomed Mater. (2024). Dec 5; 20(1).
DOI: 10.1088/1748-605X/ad967c
Google Scholar
[4]
Gibson, L.J., Ashby, M.F., Harley, B.A. Cellular Materials in Nature and Medicine, 1st ed.; Cambridge University Press: Cambridge, UK 2010.
Google Scholar
[5]
Walaa Abd-Elaziem, Moustafa M. Mohammed, Hossam M. Yehia, Tamer A Sebaey, Tabrej Khan. Porous Titanium for Medical Implants. Multidisciplinary Materials Chronicles. (2024). Vol. 1, Iss. 1, 1-18
DOI: 10.62184/mmc.jmmc100020241
Google Scholar
[6]
F. Matassi, A. Botti, L. Sirleo, C. Carulli, M. Innocenti. Porous metal for orthopedics implants. Clinical Cases in Mineral and Bone Metabolism. (2013). 10(2): 111–115. PMCID: PMC3796997
Google Scholar
[7]
Nakamura, S. Fujibayashi, M. Takaemoto. Bioactive Titanium for Implants and Bone Substitutes. Key Engineering Materials. (2013). (587). 387-390
DOI: 10.4028/www.scientific.net/KEM.587.387
Google Scholar
[8]
Sandleen Feroz, Peter Cathro, Saˇso Ivanovskі, Nawshad Muhammad. Biomimetic bone grafts and substitutes: A review of recent advancements and applications. (2023). Biomedical Engineering Advances, (6)
DOI: 10.1016/j.bea.2023.100107
Google Scholar
[9]
L.J. Gibson, M.F. Ashby, The mechanics of 3-dimensional cellular materials, Proceeding of the Royal Soiety of London, A. (1982). 382, 43–59.
Google Scholar
[10]
Ashby M.F. The properties of foams and lattices // Phil. Trans. R. Soc. A. (2006). Vol. 364, iss. 1838. – P. 15–30. DOI: 5.1098/rsta.2005.1678
Google Scholar
[11]
Gibson L.J. Biomechanics of cellular solids // J. Biomech. – 2005. – Vol. 38. – P. 377–399. DOI: 10.1016/j.jbiomech. (2004).09.027
Google Scholar
[12]
Nikitsin A.V., Mikhasev G.I. Estimation of the Effective Young's Modulus for Open Cell Porous Titanium Based on 3D Gibson-Ashby Cell. Journal of the Bielorussian State University. Mathematics and Informatics. (2022). 1: 75–82.
DOI: 10.33581/2520-6508-2022-1-75-82
Google Scholar
[13]
Shaun Eshraghi, Suman Das. Mechanical and Microstructural Properties of Polycaprolactone Scaffolds with 1-D, 2-D, and 3-D Orthogonally Oriented Porous Architectures Produced by Selective Laser Sintering. Acta Biomater. (2011). Author manuscript; available in PMC 2011 July 1.
DOI: 10.1016/j.actbio.2010.02.002
Google Scholar
[14]
Williams JM, et al. Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering. Biomaterials (2005). 26(23):4817–4827. [PubMed: 15763261]
DOI: 10.1016/j.biomaterials.2004.11.057
Google Scholar
[15]
Zein I, et al. Fused deposition modeling of novel scaffold architectures for tissue engineering applications. Biomaterials (2002).;23(4):1169–1185. [PubMed: 11791921]
DOI: 10.1016/s0142-9612(01)00232-0
Google Scholar
[16]
Shor L, et al. Precision extruding deposition (PED) fabrication of polycaprolactone (PCL) scaffolds for bone tissue engineering. Biofabrication (2009).1(1):5003.
DOI: 10.1088/1758-5082/1/1/015003
Google Scholar
[17]
Kim J, et al. Celladhesion and proliferation evaluation of SFF-based biodegradable scaffolds fabricated using multi-head deposition system. Biofabrication (2009);1(1):5002.
DOI: 10.1088/1758-5082/1/1/015002
Google Scholar
[18]
Cahill S, Lohfeld S, McHugh P. Finite element predictions compared to experimental results for the effective modulus of bone tissue engineering scaffolds fabricated by selective laser sintering. Journal of Materials Science: Materials in Medicine (2009); 20(6):1255–1262. [PubMed: 19199109]
DOI: 10.1007/s10856-009-3693-5
Google Scholar
[19]
Ł. Cyganik, M. Binkowski, G. Kokot, T. Rusin, P. Popik, F. Bolechała, R. Nowak, Z. Wróbel, A. John. Prediction of Young's modulus of trabeculae in microscale using macro-scale's relationships between bone density and mechanical properties. Journal of the Mechanical Behavior of Biomedical Materials. (2014). 36, 120–134.
DOI: 10.1016/j.jmbbm.2014.04.011
Google Scholar
[20]
B. Helgason, E. Perilli, E. Schileo, F. Taddei, S. Brynjolfsson, M. Viceconti. Mathematical relationships between bone density and mechanical properties, A literature review, Clinical Biomechanics. (2008). 23, 135–146.
DOI: 10.1016/j.clinbiomech.2007.08.024
Google Scholar
[21]
E. Hamed, I. Jasiuk, A. Yoo, Y.H. Lee, T. Liszka. Multi-scale modelling of elastic moduli of trabecular bone, Journal of the Royal Society Interface. (2012). 9, 1654–1673.
DOI: 10.1098/rsif.2011.0814
Google Scholar
[22]
K. Janc, J. Tarasiuk, P. Lipinski, A.-S. Bonnet, S. Wronski. Assessment of mechanical properties of bone trabeculae as an inverse problem of heterogeneous material modeling. Arch. Mech. (2020). 72 (5), 385–414.
Google Scholar