[1]
Ojimelukwu. P (2022) Telfairia occidentalis: A blood booster, an antioxidant and an antihyperglycaemic agent, International Journal of Nutrition and Food Sciences 7(3):1-19.
Google Scholar
[2]
Ahmad, N., Sharma, S., Alam, M.K., Singh, V.N., Shamsi, S.F., Mehta, B.R. and Fatma, A., 2010. Rapid synthesis of silver nanoparticles using dried medicinal plant of basil. Colloids and Surfaces B: Biointerfaces, 81(1), pp.81-86.
DOI: 10.1016/j.colsurfb.2010.06.029
Google Scholar
[3]
Abdel-Aziz M. S., Shaheen M. S., El-Nekeety A. A., Abdel-Wahhab M. A. (2014). Antioxidant and antibacterial activity of silver nanoparticles biosynthesized using Chenopodium murale leaf extract. J. Saudi Chem. Soc. 18 356–363.
DOI: 10.1016/j.jscs.2013.09.011
Google Scholar
[4]
Adeyemi, J.O., Oriola, A.O., Onwudiwe, D.C. and Oyedeji, A.O., 2022. Plant extracts mediated metal-based nanoparticles: Synthesis and biological applications. Biomolecules, 12(5), p.627.
DOI: 10.3390/biom12050627
Google Scholar
[5]
Khandel, P., Yadaw, R.K., Soni, D.K., Kanwar, L. and Shahi, S.K., 2018. Biogenesis of metal nanoparticles and their pharmacological applications: present status and application prospects. Journal of Nanostructure in Chemistry, 8, pp.217-254.
DOI: 10.1007/s40097-018-0267-4
Google Scholar
[6]
Darroudi, M., Yazdi, M.E.T. and Amiri, M.S., 2020. Plant-mediated biosynthesis of nanoparticles. In 21st century nanoscience–A handbook (pp.1-1). CRC Press.
DOI: 10.1201/9780429351525-1
Google Scholar
[7]
Chaudhari, R.K., Shah, P.A. and Shrivastav, P.S., 2023. Green synthesis of silver nanoparticles using Adhatoda vasica leaf extract and its application in photocatalytic degradation of dyes. Discover Nano, 18(1), p.135.
DOI: 10.1186/s11671-023-03914-5
Google Scholar
[8]
Pirtarighat, S., Ghannadnia, M. and Baghshahi, S., 2019. Green synthesis of silver nanoparticles using the plant extract of Salvia spinosa grown in vitro and their antibacterial activity assessment. Journal of Nanostructure in Chemistry, 9, pp.1-9.
DOI: 10.1007/s40097-018-0291-4
Google Scholar
[9]
Ajeboriogbon, A.F., Adewuyi, B.O. and Talabi, H.K., 2019. Synthesis of silver nanoparticles from selected plants extract. Acta Technica Corviniensis-Bulletin of Engineering, 12(2), pp.55-58.
Google Scholar
[10]
Ituen, E., Singh, A., Yuanhua, L. and Akaranta, O., 2021. Green synthesis and anticorrosion effect of Allium cepa peels extract-silver nanoparticles composite in simulated oilfield pickling solution. SN Applied Sciences, 3(6), 1-17.
DOI: 10.1007/s42452-021-04670-w
Google Scholar
[11]
Talabi, H.K., Adewuyi, B.O., Olaniran, O., Oladele, I.O. and Oladotun, J.A., 2022. Microwave accelerated chemical reduction method for the production of copper and copper oxide nanoparticles as nanometal lubricant additives. J. Chem. Technol. Metall, 57(3), pp.598-606.
Google Scholar
[12]
Talabi, H. K., 2024. Green synthesis and characterization of copper nanoparticles as reinforcement in epoxy based composite using spondias mombin leaf extract. Journal of Engineering and Engineering Technology 18 (2), 12-19.
Google Scholar
[13]
Raj, S., Singh, H., Trivedi, R. and Soni, V., 2020. Biogenic synthesis of AgNPs employing Terminalia arjuna leaf extract and its efficacy towards catalytic degradation of organic dyes. Scientific reports, 10(1), p.9616.
DOI: 10.1038/s41598-020-66851-8
Google Scholar
[14]
Ebrahimzadeh, M.A., Naghizadeh, A., Amiri, O., Shirzadi-Ahodashti, M. and Mortazavi-Derazkola, S., 2020. Green and facile synthesis of Ag nanoparticles using Crataegus pentagyna fruit extract (CP-AgNPs) for organic pollution dyes degradation and antibacterial application. Bioorganic chemistry, 94, p.103425.
DOI: 10.1016/j.bioorg.2019.103425
Google Scholar
[15]
Aslam, M., Fozia, F., Gul, A., Ahmad, I., Ullah, R., Bari, A., Mothana, R.A. and Hussain, H., 2021. Phyto-extract-mediated synthesis of silver nanoparticles using aqueous extract of Sanvitalia procumbens, and characterization, optimization and photocatalytic degradation of azo dyes Orange G and Direct Blue-15. Molecules, 26(20), 1-16.
DOI: 10.3390/molecules26206144
Google Scholar
[16]
Chandirika, J.U.; Annadurai, G., 2018. Biosynthesis and Characterization of silver Nanoparticles Using Leaf Extract Abutilon indicum. Glob. J. Biotechnol. Biochem, 13, 7–11.
Google Scholar
[17]
Yassin, M.T., Mostafa, A.A.F., Al-Askar, A.A. and Al-Otibi, F.O., 2022. Facile green synthesis of silver nanoparticles using aqueous leaf extract of Origanum majorana with potential bioactivity against multidrug resistant bacterial strains. Crystals, 12(5), p.603.
DOI: 10.3390/cryst12050603
Google Scholar
[18]
Aljeldah, M.M., Yassin, M.T., Mostafa, A.A.F. and Aboul-Soud, M.A., 2023. Synergistic antibacterial potential of greenly synthesized silver nanoparticles with fosfomycin against some nosocomial bacterial pathogens. Infection and Drug Resistance, pp.125-142.
DOI: 10.2147/idr.s394600
Google Scholar
[19]
Owoyemi, H.T., Adewuyi, B.O., Oladele, I.O., Falana, S.O., Oyegunna, S.A. and Ajileye, J.O., 2024. Silver nanoparticles reinforced polyethersulfone composite for sustainable application. Discover Polymers, 1(1), p.4.
DOI: 10.1007/s44347-024-00007-z
Google Scholar
[20]
Velgosova, O., Mačák, L., Múdra, E., Vojtko, M. and Lisnichuk, M., 2023. Preparation, structure, and properties of PVA–AgNPs nanocomposites. Polymers, 15(2), p.379.
DOI: 10.3390/polym15020379
Google Scholar