Cytotoxic and Genotoxic Investigation of Nd and Ce Crossover in Cast EZ43 Magnesium Alloy Enriched Using Rare Elements

Article Preview

Abstract:

This study focuses on the development of magnesium-zinc (Mg-Zn) matrix alloys enriched with rare earth elements (RE), aiming to evaluate both their structural characteristics and in vitro biological responses. The designed alloys incorporated varying amounts of Zn, Nd, Ce, Gd, Zr, and Ca. Two specific EZ43 alloy compositions were synthesized using an induction-heated furnace under a protective gas atmosphere, differing in their Nd-to-Ce weight ratios (1:2 and 2:1). Following casting, the alloys were homogenized at 400 °C for 24 hours to eliminate dendritic structures and minimize elemental segregation. X-ray fluorescence (XRF) was employed to assess the chemical compositions, while scanning electron microscopy (SEM) provided detailed insight into microstructural features and potential intermetallic phases. Biocompatibility was evaluated through cytotoxicity and genotoxicity tests, conducted in accordance with internationally recognized standards to ensure reliability. Results indicated no genotoxic effects and demonstrated high cell viability up to 142% particularly in Nd-enriched samples. Statistical analysis revealed significant differences in biological behavior between the Nd-rich and Ce-rich alloys, with Nd contributing positively to cellular responses. These findings emphasize the importance of RE composition in influencing biocompatibility and suggest that Nd-enriched Mg-Zn alloys hold strong promise for biomedical applications requiring both structural integrity and favorable biological interaction.

You might also be interested in these eBooks

Info:

Pages:

1-15

Citation:

Online since:

February 2026

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2026 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Song, G. and S. Song, A possible biodegradable magnesium implant material, Advanced Engineering Materials, 9 (4) (2007) 298-302.

DOI: 10.1002/adem.200600252

Google Scholar

[2] Staiger, M.P., et al., Magnesium and its alloys as orthopedic biomaterials: a review, Biomaterials, 27 (9) (2006) 1728-1734.

DOI: 10.1016/j.biomaterials.2005.10.003

Google Scholar

[3] Purnama, A., et al., Assessing the biocompatibility of degradable metallic materials: state-of-the-art and focus on the potential of genetic regulation, Acta Biomaterialia, 6 (5) (2010) 1800-1807.

DOI: 10.1016/j.actbio.2010.02.027

Google Scholar

[4] MÖ, P., Magnesium alloying, some potentials for alloy development, Journal of Japan Institute of Light Metals, 42 (12) (1992) 679-686. DOI: https://doi.org/.

DOI: 10.2464/jilm.42.679

Google Scholar

[5] Lee, Y., A. Dahle, and D. St John, The role of solute in grain refinement of magnesium, Metallurgical and Materials Transactions A, 31A (11) (2000) 2895-2906. DOI: https://doi.org/.

DOI: 10.1007/BF02830349

Google Scholar

[6] Song, G.-L. and Z. Xu, Effect of microstructure evolution on corrosion of different crystal surfaces of AZ31 Mg alloy in a chloride containing solution, Corrosion Science, 54 (2012) 97-105.

DOI: 10.1016/j.corsci.2011.09.005

Google Scholar

[7] Çiçek, B., H. Ahlatçı, and Y. Sun, Wear behaviours of Pb added Mg–Al–Si composites reinforced with in situ Mg2 Si particles, Materials & Design, 50 (2013) 929-935. DOI: https://doi.org/.

DOI: 10.1016/j.matdes.2013.03.097

Google Scholar

[8] Luo, Y., et al., The microstructure and corrosion resistance of as-extruded Mg-6Gd-2Y-(0–1.5) Nd-0.2 Zr alloys, Materials & Design, 186 (2020) 108289.

DOI: 10.1016/j.matdes.2019.108289

Google Scholar

[9] Cicek, B., et al., Investigation of microstructural evolution of gas-assisted metal injection molded and sintered Mg-0.5 Ca alloy, Science of Sintering, 54 (1) (2022) DOI: https://doi.org/.

DOI: 10.2298/SOS2201025C

Google Scholar

[10] Rim, K.T., K.H. Koo, and J.S. Park, Toxicological evaluations of rare earths and their health impacts to workers: a literature review, Safety and health at work, 4 (1) (2013) 12-26.

DOI: 10.5491/shaw.2013.4.1.12

Google Scholar

[11] Zheng, Y.F., X.N. Gu, and F. Witte, Biodegradable metals, Materials Science and Engineering: R: Reports, 77 (2014) 1-34.

Google Scholar

[12] Pagano, G., et al., Health effects and toxicity mechanisms of rare earth elements-Knowledge gaps and research prospects, Ecotoxicology and environmental safety, 115 (2015) 40-48.

DOI: 10.1016/j.ecoenv.2015.01.030

Google Scholar

[13] Tie, D., et al., Antibacterial biodegradable Mg-Ag alloys, European cells & materials, 25 (2013) 284-98; discussion 298.

Google Scholar

[14] Chen, Y., et al., Recent advances on the development of magnesium alloys for biodegradable implants, Acta biomaterialia, 10 (11) (2014) 4561-4573.

DOI: 10.1016/j.actbio.2014.07.005

Google Scholar

[15] Elen, L., et al., Biyobozunur Mg-Ag Döküm Alaşımlarının Mikroyapı Mekanik ve İn Vitro Korozyon Özelliklerinin İncelenmesi, Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 26 (1) (2022) 47-51.

DOI: 10.19113/sdufenbed.890500

Google Scholar

[16] Tsakiris, V., C. Tardei, and F.M. Clicinschi, Biodegradable Mg alloys for orthopedic implants–A review, Journal of Magnesium and Alloys, 9 (6) (2021) 1884-1905.

DOI: 10.1016/j.jma.2021.06.024

Google Scholar

[17] Elen, L., et al., The Cytotoxic and Genotoxic Assays of Mg-Ag Alloy Doped with Zn, Ca, and Nd Elements, Journal of Materials Engineering and Performance, (2022) 1-11.

DOI: 10.1007/s11665-022-07627-1

Google Scholar

[18] Bibimoune, I., et al., Characterization of defect microstructure in MgRE (RE= Ce, Nd) alloys after processing by high-pressure torsion using positron annihilation spectroscopy and a high resolution X-ray diffraction, Physica B: Condensed Matter, 663 (2023) 414963.

DOI: 10.1016/j.physb.2023.414963

Google Scholar

[19] Wu, W.-h. and C.-q. Xia, Microstructures and mechanical properties of Mg-Ce-Zn-Zr wrought alloy, Journal of Central South University of Technology, 11 (2004) 367-370.

DOI: 10.1007/s11771-004-0076-4

Google Scholar

[20] Li, J. and P. Schumacher. Solidification and age hardening behaviour of Mg-Zn-Gd Alloys. in IOP Conference Series: Materials Science and Engineering. 2012. IOP Publishing.

DOI: 10.1088/1757-899x/27/1/012021

Google Scholar

[21] Kotelnikova, A., O. Rogova, and V. Stolbova, Lanthanides in the soil: routes of entry, content, effect on plants, and genotoxicity (a review), Eurasian Soil Science, 54 (2021) 117-134.

DOI: 10.1134/s1064229321010051

Google Scholar

[22] Romero-Freire, A., et al., Cytotoxicity and genotoxicity of lanthanides for Vicia faba L. are mediated by their chemical speciation in different exposure media, Science of the Total Environment, 790 (2021) 148223.

DOI: 10.1016/j.scitotenv.2021.148223

Google Scholar

[23] Çiçek, B., Production of WE43 magnesium alloy by powder metallurgy and the effect of glucose on wear resistance in biocorrosive wear, Biointerphases, 18 (2) (2023) 021002.

DOI: 10.1116/6.0002270

Google Scholar

[24] Kubásek, J. and D. Vojtěch, Structural characteristics and corrosion behavior of biodegradable Mg–Zn, Mg–Zn–Gd alloys, Journal of Materials Science: Materials in Medicine, 24 (2013) 1615-1626.

DOI: 10.1007/s10856-013-4916-3

Google Scholar

[25] Ding, Y., et al., Effects of alloying elements on the corrosion behavior and biocompatibility of biodegradable magnesium alloys: a review, Journal of materials chemistry B, 2 (14) (2014) 1912-1933.

DOI: 10.1039/c3tb21746a

Google Scholar

[26] Jun, J.H., et al. Effects of Ca addition on microstructure and mechanical properties of Mg-RE-Zn casting alloy. in Materials Science Forum. 2005. Trans Tech Publ.

DOI: 10.4028/www.scientific.net/msf.488-489.107

Google Scholar

[27] House, K., et al., Corrosion of orthodontic appliances—should we care?, American journal of orthodontics and dentofacial orthopedics, 133 (4) (2008) 584-592.

DOI: 10.1016/j.ajodo.2007.03.021

Google Scholar

[28] Li, Y., et al., Mg–Zr–Sr alloys as biodegradable implant materials, Acta biomaterialia, 8 (8) (2012) 3177-3188.

DOI: 10.1016/j.actbio.2012.04.028

Google Scholar

[29] Şenay, V., S. Özen, and T. Aydoğmuş, Optical and surface properties of ZnN thin films manufactured by radio frequency reactive magnetron sputtering, Optik, 191 (2019) 15-21.

DOI: 10.1016/j.ijleo.2019.06.015

Google Scholar

[30] Lee, D.B., et al., Zirconium: biomedical and nephrological applications, Asaio Journal, 56 (6) (2010) 550-556.

Google Scholar

[31] Ghosh, S., A. Sharma, and G. Talukder, Zirconium: an abnormal trace element in biology, Biological trace element research, 35 (1992) 247-271.

DOI: 10.1007/bf02783770

Google Scholar

[32] Fahmi, M.W.G., et al. The Effect of Zr Addition on Microstructures and Hardness Properties of Zn-Zr Alloys for Biodegradable Orthopaedic Implant Applications. in IOP Conference Series: Materials Science and Engineering. 2020. IOP Publishing.

DOI: 10.1088/1757-899x/833/1/012065

Google Scholar

[33] Li, Z., et al., The development of binary Mg–Ca alloys for use as biodegradable materials within bone, Biomaterials, 29 (10) (2008) 1329-1344.

DOI: 10.1016/j.biomaterials.2007.12.021

Google Scholar

[34] Ding, Z.-Y., et al., In vitro corrosion of micro-arc oxidation coating on Mg-1Li-1Ca alloy-The influence of intermetallic compound Mg2Ca, Journal of Alloys and Compounds, 764 (2018) 250-260.

DOI: 10.1016/j.jallcom.2018.06.073

Google Scholar

[35] Murni, N., et al., Cytotoxicity evaluation of biodegradable Zn–3Mg alloy toward normal human osteoblast cells, Materials Science and Engineering: C, 49 (2015) 560-566.

DOI: 10.1016/j.msec.2015.01.056

Google Scholar

[36] Chen, D., et al., Biocompatibility of magnesium-zinc alloy in biodegradable orthopedic implants, International journal of molecular medicine, 28 (3) (2011) 343-348.

Google Scholar

[37] Zhang, S., et al., Research on an Mg–Zn alloy as a degradable biomaterial, Acta biomaterialia, 6 (2) (2010) 626-640.

Google Scholar

[38] Persaud-Sharma, D., N. Budiansky, and A.J. McGoron, Biocompatibility Assessment of Novel Bioresorbable Alloys Mg-Zn-Se and Mg-Zn-Cu for Endovascular Applications: In Vitro Studies, Journal of Biomimetics, Biomaterials and Tissue Engineering, 17 (2013) 25-43.

DOI: 10.4028/www.scientific.net/jbbte.17.25

Google Scholar

[39] Djebari, K., et al., Bio-properties of Mg-RE alloys: an applied study on cytotoxicity and genotoxicity, Canadian Metallurgical Quarterly, (2024) 1-13.

DOI: 10.1080/00084433.2024.2397190

Google Scholar

[40] Grillo, C.A., F. Alvarez, and M.A.F.L. de Mele, Cellular response to rare earth mixtures (La and Gd) as components of degradable Mg alloys for medical applications, Colloids and Surfaces B: Biointerfaces, 117 (2014) 312-321.

DOI: 10.1016/j.colsurfb.2014.02.030

Google Scholar

[41] Willbold, E., et al., Effect of the addition of low rare earth elements (lanthanum, neodymium, cerium) on the biodegradation and biocompatibility of magnesium, Acta biomaterialia, 11 (2015) 554-562.

DOI: 10.1016/j.actbio.2014.09.041

Google Scholar

[42] Kubásek, J., et al., Structure, mechanical characteristics and in vitro degradation, cytotoxicity, genotoxicity and mutagenicity of novel biodegradable Zn–Mg alloys, Materials Science and Engineering: C, 58 (2016) 24-35.

DOI: 10.1016/j.msec.2015.08.015

Google Scholar

[43] Hanana, H., C. Kleinert, and F. Gagné, Toxicity of representative mixture of five rare earth elements in juvenile rainbow trout (Oncorhynchus mykiss) juveniles, Environmental Science and Pollution Research, 28 (22) (2021) 28263-28274.

DOI: 10.1007/s11356-020-12218-5

Google Scholar

[44] Eljezi, T., et al., In vitro cytotoxic effects of DEHP-alternative plasticizers and their primary metabolites on a L929 cell line, Chemosphere, 173 (2017) 452-459.

DOI: 10.1016/j.chemosphere.2017.01.026

Google Scholar

[45] Alpaslan, D., et al., p (thyme oil) and p (clove oil) organo‐particles with biocompatible, anticancer, antioxidant, and antibacterial properties against Capan‐1 and L‐929 cells, The Canadian Journal of Chemical Engineering, (2023).

DOI: 10.1002/cjce.25061

Google Scholar

[46] Istrate, B., et al., Study of the Tribological And Mechanical Properties of some Biodegradable Mg-Ca-Zn Alloys, International Journal of Modern Manufacturing Technologies (IJMMT), 15 (2) (2023).

Google Scholar

[47] Thomas, K.K., et al., Biodegradable Magnesium Alloys for Biomedical Implants: Properties, Challenges, and Surface Modifications with a Focus on Orthopedic Fixation Repair, Applied Sciences, 14 (1) (2023) 10.

DOI: 10.3390/app14010010

Google Scholar

[48] Chen, D., et al., Effects of Bulk LPSO Phases on Mechanical Properties and Fracture Behavior of As-Extruded Mg-Gd-Y-Zn-Zr Alloys, Materials, 16 (23) (2023) 7258.

DOI: 10.3390/ma16237258

Google Scholar

[49] Martynenko, N., et al., Improved Mechanical Properties of Biocompatible Zn-1.7% Mg and Zn1. 7% Mg-0.2% Zr Alloys Deformed with High-Pressure Torsion, Metals, 13 (11) (2023) 1817.

DOI: 10.3390/met13111817

Google Scholar

[50] Xie, Y., et al., Evaluation of toxicity and biocompatibility of a novel Mg-Nd-Gd-Sr alloy in the osteoblastic cell, Molecular Biology Reports, 50 (9) (2023) 7161-7171.

DOI: 10.1007/s11033-023-08637-5

Google Scholar

[51] AL-Shahrabalee, S.Q. and H.A. Jaber, Investigation of the Nd-Ce-Mg-Zn/Substituted Hydroxyapatite Effect on Biological Properties and Osteosarcoma Cells, Journal of Renewable Materials, 11 (3) (2023).

DOI: 10.32604/jrm.2023.025011

Google Scholar

[52] Tong, X., et al., Enhanced Mechanical Properties, Corrosion Resistance, Cytocompatibility, Osteogenesis, and Antibacterial Performance of Biodegradable Mg–2Zn–0.5 Ca–0.5 Sr/Zr Alloys for Bone‐Implant Application, Advanced Healthcare Materials, 13 (12) (2024) 2303975.

DOI: 10.1002/adhm.202303975

Google Scholar

[53] Feyerabend, F., et al., Evaluation of short-term effects of rare earth and other elements used in magnesium alloys on primary cells and cell lines, Acta biomaterialia, 6 (5) (2010) 1834-1842.

DOI: 10.1016/j.actbio.2009.09.024

Google Scholar

[54] Jana, A., M. Das, and V.K. Balla, Effect of heat treatment on microstructure, mechanical, corrosion and biocompatibility of Mg-Zn-Zr-Gd-Nd alloy, Journal of Alloys and Compounds, 821 (2020) 153462.

DOI: 10.1016/j.jallcom.2019.153462

Google Scholar

[55] Zhang, Y., et al., Effects of intermetallic microstructure on degradation of Mg-5Nd alloy, Metallurgical and Materials Transactions A, 51 (2020) 5498-5515.

DOI: 10.1007/s11661-020-05926-7

Google Scholar

[56] Aggarwal, D., V.K. Singla, and S. Sharma, Investigation of the mechanical and corrosion properties of Mg-Hydroxyapatite composite by addition of rare-earth oxide particulates for biomedical applications, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 237 (2) (2023) 420-439.

DOI: 10.1177/09544062221121990

Google Scholar

[57] Abaspour, S. and C.H. Cáceres, Thermodynamics-based selection and design of creep-resistant cast Mg alloys, Metallurgical and Materials Transactions A, 46 (2015) 5972-5988.

DOI: 10.1007/s11661-015-3128-5

Google Scholar

[58] Candan, S., et al., Effects of titanium addition on mechanical and corrosion behaviours of AZ91 magnesium alloy, Journal of Alloys and Compounds, 509 (5) (2011) 1958-1963.

DOI: 10.1016/j.jallcom.2010.10.100

Google Scholar

[59] Çiçek, B. and Y. Sun, A study on the mechanical and corrosion properties of lead added magnesium alloys, Mater Design, 37 (2012) 369-372. DOI: https://doi.org/.

DOI: 10.1016/j.matdes.2012.01.029

Google Scholar

[60] Carbonneau, Y., et al., On the observation of a new ternary MgSiCa phase in Mg-Si alloys, Metallurgical and Materials transactions A, 29 (6) (1998) 1759-1763.

DOI: 10.1007/s11661-998-0099-9

Google Scholar

[61] Senf, J., et al., Corrosion and galvanic corrosion of die casted magnesium alloys, Magnesium technology 2000, (2000) 136-142.

DOI: 10.1002/9781118808962.ch21

Google Scholar

[62] Sarmiento-Bustos, E., et al., Optimized In-vitro Corrosion Assessment of a FeAl intermetallic Compound Modified with Ag in Artificial Human Media, International Journal of Electrochemical Science, 11 (5) (2016) 4136-4148.

DOI: 10.1016/s1452-3981(23)17465-7

Google Scholar

[63] Castañeda, I., et al., Corrosion behavior of Ni-Al-Cu alloys in simulated human body solution, International Journal of Electrochemical Science, 6 (2) (2011) 404-418.

DOI: 10.1016/s1452-3981(23)15004-8

Google Scholar

[64] Nagalakshmi, R., et al., Corrosion behaviour of biomaterials in synthetic biological solutions-An overview, Europen Chemical Bulletin, 2 (4) (2013) 171-179.

Google Scholar

[65] Arrieta-Gonzalez, C., et al., Electrochemical Behavior of Fe3Al Modified with Ni in Hank´ s Solution, International Journal of Electrochemical Science, 6 (9) (2011) 4016-4031.

DOI: 10.1016/s1452-3981(23)18307-6

Google Scholar

[66] Elen, L., et al., The cytotoxic and genotoxic assays of Mg-Ag Alloy doped with Zn, Ca, and Nd elements, Journal of Materials Engineering and Performance, 32 (16) (2023) 7337-7347.

DOI: 10.1007/s11665-022-07627-1

Google Scholar

[67] Yao, Q.-S., et al., Corrosion resistance of a ceria/polymethyltrimethoxysilane modified Mg-Al-layered double hydroxide on AZ31 magnesium alloy, Journal of Alloys and Compounds, 764 (2018) 913-928.

DOI: 10.1016/j.jallcom.2018.06.152

Google Scholar

[68] Pierscionek, B.K., et al., The effect of high concentration and exposure duration of nanoceria on human lens epithelial cells, Nanomedicine: Nanotechnology, Biology and Medicine, 8 (3) (2012) 383-390.

DOI: 10.1016/j.nano.2011.06.016

Google Scholar

[69] Levy, G.K., et al., Cytotoxic characteristics of biodegradable EW10X04 Mg alloy after Nd coating and subsequent heat treatment, Materials Science and Engineering: C, 62 (2016) 752-761.

DOI: 10.1016/j.msec.2016.01.086

Google Scholar

[70] Zhang, Y., et al., Influence of the amount of intermetallics on the degradation of Mg-Nd alloys under physiological conditions, Acta biomaterialia, 121 (2021) 695-712.

DOI: 10.1016/j.actbio.2020.11.050

Google Scholar

[71] Levy, G. and E. Aghion, Effect of diffusion coating of Nd on the corrosion resistance of biodegradable Mg implants in simulated physiological electrolyte, Acta biomaterialia, 9 (10) (2013) 8624-8630.

DOI: 10.1016/j.actbio.2013.01.009

Google Scholar

[72] Wang, Y., et al., High-throughput calculations combining machine learning to investigate the corrosion properties of binary Mg alloys, Journal of Magnesium and Alloys, In Press (Proof) (2022).

DOI: 10.1016/j.jma.2021.12.007

Google Scholar

[73] Siciliano, A., et al., Cerium, gadolinium, lanthanum, and neodymium effects in simplified acid mine discharges to Raphidocelis subcapitata, Lepidium sativum, and Vicia faba, Science of The Total Environment, 787 (2021) 147527.

DOI: 10.1016/j.scitotenv.2021.147527

Google Scholar

[74] Pellegrino, A., L. Vasiluk, and B. Hale, Phytotoxicity effect concentrations (ECx) for Ce, Nd and Eu added to soil relative to total and bioaccessible soil REE concentrations, and tissue REE accumulations, Chemosphere, 307 (2022) 135723.

DOI: 10.1016/j.chemosphere.2022.135723

Google Scholar

[75] Blinova, I., et al., Potential hazard of lanthanides and lanthanide-based nanoparticles to aquatic ecosystems: Data gaps, challenges and future research needs derived from bibliometric analysis, Nanomaterials, 10 (2) (2020) 328.

DOI: 10.3390/nano10020328

Google Scholar

[76] Oral, R., et al., Cytogenetic and developmental toxicity of cerium and lanthanum to sea urchin embryos, Chemosphere, 81 (2) (2010) 194-198.

DOI: 10.1016/j.chemosphere.2010.06.057

Google Scholar

[77] Mamrilla, W., et al., The Influence of Manganese Addition on the Properties of Biodegradable Zinc-Manganese-Calcium Alloys, Materials, 16 (13) (2023) 4655.

DOI: 10.3390/ma16134655

Google Scholar

[78] Alev, U. and I. Mutlu, Production and Characterization of Biodegradable Zn-Mn-Mg Alloy, Asian Journal of Microbiology and Biotechnology, 8 (2) (2023) 31-36.

DOI: 10.56557/ajmab/2023/v8i28310

Google Scholar

[79] Zhao, N., et al., In vitro biocompatibility and endothelialization of novel magnesium-rare earth alloys for improved stent applications, PloS one, 9 (6) (2014) e98674.

DOI: 10.1371/journal.pone.0098674

Google Scholar

[80] Büyükgenç, Ö., B. Çiçek, and H. Ahlatçı, Corrosion Performance of Novel EZ43 Mg Alloys Enriched with Ce and Nd, Materials Performance and Characterization, 14 (1) (2025) 199-212.

DOI: 10.1520/mpc20250019

Google Scholar

[81] Amano, H., et al., Biodegradable surgical staple composed of magnesium alloy, Scientific reports, 9 (1) (2019) 14671.

Google Scholar