[1]
B. C Sakiadis, Boundary-layer behavior on continuous solid surface II: boundary layer equation for two dimensional and axisymmetric flow, J AI. Che, 7 (1961) 221-225.
DOI: 10.1002/aic.690070211
Google Scholar
[2]
L. J Crane, Flow fast a stretching plate, ZAMP, 21(4) (1970) 645-647.
Google Scholar
[3]
Anuar Ishak, Thermal boundary layer flow over a stretching sheet in a micropolar fluid with radiation effect, Meccanica, 45 (2010) 367-373. DOI: 10. 1007/s11012-009-9257-4.
DOI: 10.1007/s11012-009-9257-4
Google Scholar
[4]
W. Ibrahim, B. Shankar, MHD boundary layer flow and heat transfer of a nanofluid past a permeable stretching sheet with velocity, thermal and solutal slip boundary conditions, Computers and Fluids, 75(2013) 1-10.
DOI: 10.1016/j.compfluid.2013.01.014
Google Scholar
[5]
U.H. Razwan, S. Nadeem, Z. Hayat Khan, N. S Akbar, Thermal radiation and slip effects on MHD stagnation flow of a nanofluid over a stretching sheet, Physica E, 65(2015) 17-23.
DOI: 10.1016/j.physe.2014.07.013
Google Scholar
[6]
F. Maboob, W. A Khan, A. I. M Ismail, MHD boundary layer flow and heat transfer of nanofluids over a nonlinear stretching sheet : A numerical study, Journal of Magnetism and Magnetic Material , 374(2015) 569-576.
DOI: 10.1016/j.jmmm.2014.09.013
Google Scholar
[7]
N. Sandeep, C. Sulochana, Dual solution of radiative MHD nanofluid flow over an exponentially stretching sheet with heat generation/absorption, Appl Nanosci, DOI: 10. 1007/s13204-015-0420-z.
DOI: 10.1007/s13204-015-0420-z
Google Scholar
[8]
C.S. K Raju, N. Sandeep, C. Sulochana, V. Sugunamma, M. Jayachandra, Radiation inclined magnetic field and cross-diffusion effects on flow over a stretching surface, Journal of the Nigerian Mathematical Society, 34(2015) 169-180.
DOI: 10.1016/j.jnnms.2015.02.003
Google Scholar
[9]
M. Miklavcic, C. Y Wang, Viscous flow due to a shrinking sheet, Quareterly of Applied Mathematics, 64(2006) 283-290.
Google Scholar
[10]
N. Sandeep, C. Sulochana, I.L. Animasaun, Stagnation-point flow of a Jeffrey nano fluid over a stretching surface with induced magnetic field and chemical reaction, Int.J. Eng. Resaech in Afrika, 20 (2016) 93-111.
DOI: 10.4028/www.scientific.net/jera.20.93
Google Scholar
[11]
N. Sandeep, C Sulochana, Dual solution for unsteady mixed convection flow of MHD micropolar fluid over a stretching/shrinking sheet with non-uniform heat source/sink, Engineering Science and Technology, an International Journal, 18(2015) 738-745.
DOI: 10.1016/j.jestch.2015.05.006
Google Scholar
[12]
C. Sulochana, N. Sandeep, Stagnation-point flow and heat transfer behavior of Cu-water nanofluid towards horizontal and exponentially stretching/shrinking cylinders. Applied Nanoscience, (2015) DOI 10. 1007/s13204-015-0451-5.
DOI: 10.1007/s13204-015-0451-5
Google Scholar
[13]
C.S.K. Raju, N. Sandeep, Stagnation point flow of a micro polar fluid over a nonlinear stretching surface with suction, Int.J. Scientific and Eng. Research, 6(9) (2015) 67-73.
Google Scholar
[14]
J.V. Ramana Reddy, V. Sugunamma, N. Sandeep, C.S.K. Raju, M. Jayachnadra Babu, Induced magneticfield effect on stagnation point flow of magneto nano fluids towards a stretching sheet, Adv. Sci. Eng. And Medicine 7(11), (2015) 968-974.
DOI: 10.1166/asem.2015.1791
Google Scholar
[15]
N. A Yacob, A. Ishak, Micropolar fluid flow over a shrinking sheet, Meccanica, 47 (2012) 293-299, DOI: 10. 1007s11012-011-9439-8.
DOI: 10.1007/s11012-011-9439-8
Google Scholar
[16]
C. Y Wang, Stagnation flow towards a shrinking sheet, Int J Nonlinear Mech, 43 (2008) 377-382.
Google Scholar
[17]
N. Sandeep, C. Sulochana, Dual solutions for MHD stagnation point flow of a nano fluid over a stretching surface with induced magnetic field, Int. J. Science and engineering, 9(1) (2015) 1-8.
Google Scholar
[18]
K. Bhattacharyya, Heat transfer analysis in unsteady boundary layer stagnation point flow towards a shrinking/stretching sheet, Ain Shams Engineering Journal, 4(2013) 259-264.
DOI: 10.1016/j.asej.2012.07.002
Google Scholar
[19]
C.S.K. Raju, N. Sandeep, Heat and mass transfer in MHD non-Newtonian bio-convection flow over a rotating cone/plate with cross diffusion, Journal of Molecular Liquids 215 (2016) 115–126.
DOI: 10.1016/j.molliq.2015.12.058
Google Scholar
[20]
C.S.K. Raju, N. Sandeep, M. Gnaneswar Reddy, Effect of nonlinear thermal radiation on 3D Jeffrey fluid flow in the presence of homogeneous-heterogeneous reactions, Int. J. Eng. Research in Afrika, 21 (2016) 52-68.
DOI: 10.4028/www.scientific.net/jera.21.52
Google Scholar
[21]
J.V. Ramana Reddy, V. Sugunamma, N. Sandeep, Radiation effects on Casson fluid flow past a permeable vertical oscillating plate, Int.J. Scientific and Innovative mathematical research, 3(3), 930-934, (2015).
Google Scholar
[22]
C.S.K. Raju, N. Sandeep, Heat and Mass Transfer in 3D non-Newtonian nano and Ferro fluids over a bidirectional stretching surface, Int.J. Eng. Research in Afrika, 21 (2016) 33-51.
DOI: 10.4028/www.scientific.net/jera.21.33
Google Scholar
[23]
K. Zaimi, A. Ishak, stagnation-point flow and heat transfer over a nonlinearly stretching/shrinking sheet in a micropolar fluid, Abstract and Applied Analysis, Volume 2014, Article ID 261630, http: /dx. doi. org/10. 1155/2014/261630.
DOI: 10.1155/2014/261630
Google Scholar
[24]
N. Sandeep, C. Sulochana, V. Sugunamma, Radiation and magnetic field effects on unsteady mixed convection flow over a vertical stretching/shrinking surface with suction/injection, Industrial Engineering Letters, 5(5) (2015) 127-136.
Google Scholar
[25]
T. R Mahapatra, N. Samir Kumar, A. S Gupta, Oblique stagnation-point flow and heat transfer towards a shrinking sheet with thermal radiation, Meccanica, 47 (2012) 1325-1335.
DOI: 10.1007/s11012-011-9516-z
Google Scholar
[26]
K. Bhattacharyya, G. C Layek, Effects of suction/blowing on steady boundary layer stagnation-point flow and heat transfer towards a shrinking sheet with thermal radiation, International Journal of Heat and Mass Transfer, 54(2011) 302-307.
DOI: 10.1016/j.ijheatmasstransfer.2010.09.043
Google Scholar
[27]
U. Khan, N Ahmeda, S. Irfan, S. T Mohyuddina, Thermo-diffusion effects on MHD stagnation point flow towards a stretching sheet in a nanofluid, Propulsion and Power Research, 3(3) (2014) 151-158.
DOI: 10.1016/j.jppr.2014.07.006
Google Scholar
[28]
Dulal Pal, H. Mondal, MHD non-Darcian mixed convection heat and mass transfer over a non-linear stretching sheet with Soret-Dufour effects and chemical reaction, International Communications in Heat and Mass Tranafer, 38(4) (2011) 463-467.
DOI: 10.1016/j.icheatmasstransfer.2010.12.039
Google Scholar
[29]
Dulal Pal, H. Mondal, Soret and Dufour effects on MHD non-Darcian mixed conveation heat and mass transfer over a stretching sheet with non-uniform heat source/sink, Physica B: Condensed Matter, 407(4) (2012) 642-651.
DOI: 10.1016/j.physb.2011.11.051
Google Scholar
[30]
S. Suneeta, K. Gangadhar, Thermal radiation effect on MHD stagnation flow of a Carreau fluid with convective boundary condition, Journal of Mathematics and application, 3(5) (2014) 121-127.
Google Scholar
[31]
N.S. Akbar, S. Nadeem,U. H Rizwan, Y. Shiwei, MHD stagnation point flow of a Carreau fluid toward a permeable shrinking sheet, Commun Nonlinear Sci Numer Simulat 17 (2012) 2728-2734.
DOI: 10.1016/j.asej.2014.05.006
Google Scholar
[32]
J. P Hsu, Y. H Hsieh, T. Shiojenn, Drag force on a rigid spheroidal particle in a cylinder filled with Carreau fluid, Journal of Colloid and Interface science, 284 (2005) 729-741.
DOI: 10.1016/j.jcis.2004.08.124
Google Scholar
[33]
N. S Akbar, S. Nadeem, Carreau fluid model for blood flow through a tapered artery with a stenosis, Ains Shams Engineering Journal, 5 (2014) 1307-1316.
DOI: 10.1016/j.asej.2014.05.010
Google Scholar
[34]
M.Y. Malik, I. Zehra, S. Nadeem, Flows of Carreau fluid with pressure dependent viscosity in a variable porous medium: Application of polymer melt, Alexandria Engineering Journal 53 (2014) 427-435.
DOI: 10.1016/j.aej.2014.03.013
Google Scholar
[35]
N.S. Akbar, S. Nadeem, Z. Hayat, Numerical simulation of peristaltic flow of a Carreau nanofluid in an asymmetric channel, Alexandria Engineering Journal, 53(2014) 191-197.
DOI: 10.1016/j.aej.2013.10.003
Google Scholar