Thermal Radiation Effect on MHD Nanofluid Flow over a Stretching Sheet

Article Preview

Abstract:

The present study is a numerical investigation of heat and mass transfer in two-dimensional MHD stagnation point flow of a radiative Carreau nanofluid past a stretching surface in the presence of Soret and suction/blowing effects. The governing partial differential equations are transformed into a set of ordinary differential equations by using approximate self-similarity transformation and solved numerically using Runge-Kutta and Newton’s methods. The graphical and tabular results elucidate the influence of different non-dimensional governing parameters on the velocity, temperature and concentration fields along with the wall friction, local Nusselt and Sherwood numbers. We found the dual nature of the solutions for Newtonian and non-Newtonian fluid cases.

You might also be interested in these eBooks

Info:

Pages:

89-102

Citation:

Online since:

April 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] B. C Sakiadis, Boundary-layer behavior on continuous solid surface II: boundary layer equation for two dimensional and axisymmetric flow, J AI. Che, 7 (1961) 221-225.

DOI: 10.1002/aic.690070211

Google Scholar

[2] L. J Crane, Flow fast a stretching plate, ZAMP, 21(4) (1970) 645-647.

Google Scholar

[3] Anuar Ishak, Thermal boundary layer flow over a stretching sheet in a micropolar fluid with radiation effect, Meccanica, 45 (2010) 367-373. DOI: 10. 1007/s11012-009-9257-4.

DOI: 10.1007/s11012-009-9257-4

Google Scholar

[4] W. Ibrahim, B. Shankar, MHD boundary layer flow and heat transfer of a nanofluid past a permeable stretching sheet with velocity, thermal and solutal slip boundary conditions, Computers and Fluids, 75(2013) 1-10.

DOI: 10.1016/j.compfluid.2013.01.014

Google Scholar

[5] U.H. Razwan, S. Nadeem, Z. Hayat Khan, N. S Akbar, Thermal radiation and slip effects on MHD stagnation flow of a nanofluid over a stretching sheet, Physica E, 65(2015) 17-23.

DOI: 10.1016/j.physe.2014.07.013

Google Scholar

[6] F. Maboob, W. A Khan, A. I. M Ismail, MHD boundary layer flow and heat transfer of nanofluids over a nonlinear stretching sheet : A numerical study, Journal of Magnetism and Magnetic Material , 374(2015) 569-576.

DOI: 10.1016/j.jmmm.2014.09.013

Google Scholar

[7] N. Sandeep, C. Sulochana, Dual solution of radiative MHD nanofluid flow over an exponentially stretching sheet with heat generation/absorption, Appl Nanosci, DOI: 10. 1007/s13204-015-0420-z.

DOI: 10.1007/s13204-015-0420-z

Google Scholar

[8] C.S. K Raju, N. Sandeep, C. Sulochana, V. Sugunamma, M. Jayachandra, Radiation inclined magnetic field and cross-diffusion effects on flow over a stretching surface, Journal of the Nigerian Mathematical Society, 34(2015) 169-180.

DOI: 10.1016/j.jnnms.2015.02.003

Google Scholar

[9] M. Miklavcic, C. Y Wang, Viscous flow due to a shrinking sheet, Quareterly of Applied Mathematics, 64(2006) 283-290.

Google Scholar

[10] N. Sandeep, C. Sulochana, I.L. Animasaun, Stagnation-point flow of a Jeffrey nano fluid over a stretching surface with induced magnetic field and chemical reaction, Int.J. Eng. Resaech in Afrika, 20 (2016) 93-111.

DOI: 10.4028/www.scientific.net/jera.20.93

Google Scholar

[11] N. Sandeep, C Sulochana, Dual solution for unsteady mixed convection flow of MHD micropolar fluid over a stretching/shrinking sheet with non-uniform heat source/sink, Engineering Science and Technology, an International Journal, 18(2015) 738-745.

DOI: 10.1016/j.jestch.2015.05.006

Google Scholar

[12] C. Sulochana, N. Sandeep, Stagnation-point flow and heat transfer behavior of Cu-water nanofluid towards horizontal and exponentially stretching/shrinking cylinders. Applied Nanoscience, (2015) DOI 10. 1007/s13204-015-0451-5.

DOI: 10.1007/s13204-015-0451-5

Google Scholar

[13] C.S.K. Raju, N. Sandeep, Stagnation point flow of a micro polar fluid over a nonlinear stretching surface with suction, Int.J. Scientific and Eng. Research, 6(9) (2015) 67-73.

Google Scholar

[14] J.V. Ramana Reddy, V. Sugunamma, N. Sandeep, C.S.K. Raju, M. Jayachnadra Babu, Induced magneticfield effect on stagnation point flow of magneto nano fluids towards a stretching sheet, Adv. Sci. Eng. And Medicine 7(11), (2015) 968-974.

DOI: 10.1166/asem.2015.1791

Google Scholar

[15] N. A Yacob, A. Ishak, Micropolar fluid flow over a shrinking sheet, Meccanica, 47 (2012) 293-299, DOI: 10. 1007s11012-011-9439-8.

DOI: 10.1007/s11012-011-9439-8

Google Scholar

[16] C. Y Wang, Stagnation flow towards a shrinking sheet, Int J Nonlinear Mech, 43 (2008) 377-382.

Google Scholar

[17] N. Sandeep, C. Sulochana, Dual solutions for MHD stagnation point flow of a nano fluid over a stretching surface with induced magnetic field, Int. J. Science and engineering, 9(1) (2015) 1-8.

Google Scholar

[18] K. Bhattacharyya, Heat transfer analysis in unsteady boundary layer stagnation point flow towards a shrinking/stretching sheet, Ain Shams Engineering Journal, 4(2013) 259-264.

DOI: 10.1016/j.asej.2012.07.002

Google Scholar

[19] C.S.K. Raju, N. Sandeep, Heat and mass transfer in MHD non-Newtonian bio-convection flow over a rotating cone/plate with cross diffusion, Journal of Molecular Liquids 215 (2016) 115–126.

DOI: 10.1016/j.molliq.2015.12.058

Google Scholar

[20] C.S.K. Raju, N. Sandeep, M. Gnaneswar Reddy, Effect of nonlinear thermal radiation on 3D Jeffrey fluid flow in the presence of homogeneous-heterogeneous reactions, Int. J. Eng. Research in Afrika, 21 (2016) 52-68.

DOI: 10.4028/www.scientific.net/jera.21.52

Google Scholar

[21] J.V. Ramana Reddy, V. Sugunamma, N. Sandeep, Radiation effects on Casson fluid flow past a permeable vertical oscillating plate, Int.J. Scientific and Innovative mathematical research, 3(3), 930-934, (2015).

Google Scholar

[22] C.S.K. Raju, N. Sandeep, Heat and Mass Transfer in 3D non-Newtonian nano and Ferro fluids over a bidirectional stretching surface, Int.J. Eng. Research in Afrika, 21 (2016) 33-51.

DOI: 10.4028/www.scientific.net/jera.21.33

Google Scholar

[23] K. Zaimi, A. Ishak, stagnation-point flow and heat transfer over a nonlinearly stretching/shrinking sheet in a micropolar fluid, Abstract and Applied Analysis, Volume 2014, Article ID 261630, http: /dx. doi. org/10. 1155/2014/261630.

DOI: 10.1155/2014/261630

Google Scholar

[24] N. Sandeep, C. Sulochana, V. Sugunamma, Radiation and magnetic field effects on unsteady mixed convection flow over a vertical stretching/shrinking surface with suction/injection, Industrial Engineering Letters, 5(5) (2015) 127-136.

Google Scholar

[25] T. R Mahapatra, N. Samir Kumar, A. S Gupta, Oblique stagnation-point flow and heat transfer towards a shrinking sheet with thermal radiation, Meccanica, 47 (2012) 1325-1335.

DOI: 10.1007/s11012-011-9516-z

Google Scholar

[26] K. Bhattacharyya, G. C Layek, Effects of suction/blowing on steady boundary layer stagnation-point flow and heat transfer towards a shrinking sheet with thermal radiation, International Journal of Heat and Mass Transfer, 54(2011) 302-307.

DOI: 10.1016/j.ijheatmasstransfer.2010.09.043

Google Scholar

[27] U. Khan, N Ahmeda, S. Irfan, S. T Mohyuddina, Thermo-diffusion effects on MHD stagnation point flow towards a stretching sheet in a nanofluid, Propulsion and Power Research, 3(3) (2014) 151-158.

DOI: 10.1016/j.jppr.2014.07.006

Google Scholar

[28] Dulal Pal, H. Mondal, MHD non-Darcian mixed convection heat and mass transfer over a non-linear stretching sheet with Soret-Dufour effects and chemical reaction, International Communications in Heat and Mass Tranafer, 38(4) (2011) 463-467.

DOI: 10.1016/j.icheatmasstransfer.2010.12.039

Google Scholar

[29] Dulal Pal, H. Mondal, Soret and Dufour effects on MHD non-Darcian mixed conveation heat and mass transfer over a stretching sheet with non-uniform heat source/sink, Physica B: Condensed Matter, 407(4) (2012) 642-651.

DOI: 10.1016/j.physb.2011.11.051

Google Scholar

[30] S. Suneeta, K. Gangadhar, Thermal radiation effect on MHD stagnation flow of a Carreau fluid with convective boundary condition, Journal of Mathematics and application, 3(5) (2014) 121-127.

Google Scholar

[31] N.S. Akbar, S. Nadeem,U. H Rizwan, Y. Shiwei, MHD stagnation point flow of a Carreau fluid toward a permeable shrinking sheet, Commun Nonlinear Sci Numer Simulat 17 (2012) 2728-2734.

DOI: 10.1016/j.asej.2014.05.006

Google Scholar

[32] J. P Hsu, Y. H Hsieh, T. Shiojenn, Drag force on a rigid spheroidal particle in a cylinder filled with Carreau fluid, Journal of Colloid and Interface science, 284 (2005) 729-741.

DOI: 10.1016/j.jcis.2004.08.124

Google Scholar

[33] N. S Akbar, S. Nadeem, Carreau fluid model for blood flow through a tapered artery with a stenosis, Ains Shams Engineering Journal, 5 (2014) 1307-1316.

DOI: 10.1016/j.asej.2014.05.010

Google Scholar

[34] M.Y. Malik, I. Zehra, S. Nadeem, Flows of Carreau fluid with pressure dependent viscosity in a variable porous medium: Application of polymer melt, Alexandria Engineering Journal 53 (2014) 427-435.

DOI: 10.1016/j.aej.2014.03.013

Google Scholar

[35] N.S. Akbar, S. Nadeem, Z. Hayat, Numerical simulation of peristaltic flow of a Carreau nanofluid in an asymmetric channel, Alexandria Engineering Journal, 53(2014) 191-197.

DOI: 10.1016/j.aej.2013.10.003

Google Scholar