Development of an Innovative Pavement Recycling Technique Using Fine RAP in Sand Concrete for Road Slabs

Article Preview

Abstract:

The reuse of reclaimed asphalt pavement (RAP), sourced from the milling of existing pavements, offers an eco-friendly alternative to natural aggregates. It offers significant environmental benefits by reducing landfill waste and limiting the exploitation of natural resources. This study investigates the potential incorporation of fine RAP (FRAP) in the production of sand concrete, a particular type of concrete composed solely of fine aggregates. Firstly, five sand concrete mixtures were designed by partially or fully replacing natural sand with FRAP and were then assessed in terms of their mechanical characteristics and durability-related indicators. The results revealed that FRAP can be successfully used to produce sustainable sand concrete at replacement levels up to 50%, meeting all the mechanical performance requirements for pavement applications. The incorporation of FRAP also resulted in increased water absorption by immersion and higher sorptivity values. Yet, these values remained within the permissible limits for mixtures with 50% or less FRAP. Furthermore, given the critical role of elastic modulus in rigid pavement design, three predictive models were evaluated to estimate the elastic modulus of FRAP mixtures. The findings indicated that, when incorporating a correction factor reflecting aggregate quality, the ACI 318 model provided the highest accuracy, achieving a root mean square error of 1.5 GPa. The study confirmed the feasibility of reusing RAP in sand concrete, offering practical guidance for engineers to adopt this technique in pavement applications and encouraging greener construction practices.

You might also be interested in these eBooks

Info:

Pages:

133-152

Citation:

Online since:

November 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] I. Boussetta, S. El Euch Khay, and J. Neji, Comprehensive Study on Mechanical and Transport Properties of Roller-Compacted Concrete Incorporating Reclaimed Asphalt Pavement, International Journal of Engineering Research in Africa. 71 (2024) 61-78

DOI: 10.4028/p-ZrpJX0

Google Scholar

[2] W. Taktak, and A. Loulizi, Selection of a pavement structure from technically established alternatives based on construction cost, energy consumption, and carbon footprint, International Journal of Engineering Research in Africa. 62 (2022) 85-106

DOI: 10.4028/p-xx05a5

Google Scholar

[3] S. El Euch Ben Said, S. El Euch Khay, and A. Loulizi, Experimental Investigation of PCC Incorporating RAP, International Journal of Concrete Structures and Materials. 12(1) (2018) 1-11

DOI: 10.1186/s40069-018-0227-x

Google Scholar

[4] S. Singh, G.D. Ransinchung, and P. Kumar, Feasibility study of RAP aggregates in cement concrete pavements, Road Materials and Pavement Design. 20(1) (2019) 151-170

DOI: 10.1080/14680629.2017.1380071

Google Scholar

[5] C. Pandiya, and A.K. Saxena, Effect of Reclaimed Asphalt Pavement Aggregate on Hardened Properties of Concrete, International Journal for Research in Applied Science & Engineering Technology. 9(6) (2021) 1168-1172

DOI: 10.22214/ijraset.2021.38776

Google Scholar

[6] S.K. Sahdeo, G. Ransinchung , K.L. Rahul, and S. Debbarma, Reclaimed asphalt pavement as a substitution to natural coarse aggregate for the production of sustainable pervious concrete pavement mixes, Journal of Materials in Civil Engineering. 33(2) (2021) 04020469. https://doi.org/10.1061/(ASCE)MT.1943- 5533.0003555

DOI: 10.1061/(asce)mt.1943-5533.0003555

Google Scholar

[7] G.Masi, A. Michelacci, S.Manzi, and M.C. Bignozzi, Assessment of reclaimed asphalt pavement (Rap) as recycled aggregate for concrete, Construction and Building Materials. 341(2022) 127745. https://doi. org/

DOI: 10.1016/j.conbuildmat.2022.127745

Google Scholar

[8] R. Vasudeva, Influence of reclaimed asphalt pavement aggregates on strength and durability properties of concrete mixes in rigid pavements, The Journal of Engineering Research. 20(1) (2023) 1-11

DOI: 10.53540/tjer.vol20iss2pp1-11

Google Scholar

[9] C.G. Papakonstantinou, Resonant column testing on Portland cement concrete containing recycled asphalt pavement (RAP) aggregates, Construction and Building Materials. 173 (2018) 419-428

DOI: 10.1016/j.conbuildmat.2018.03.256

Google Scholar

[10] A. Almusawi, M.M. Jaleel, S. Shoman, and A.P. Lupanov, Enhancing waste asphalt durability through cold recycling and additive integration, Functional Composite Materials. 5(1) (2024) 10

DOI: 10.1186/s42252-024-00061-7

Google Scholar

[11] M.D. Rout, K. Shubham, S. Biswas, and A.K. Sinha, An integrated evaluation of waste materials containing recycled asphalt fine aggregates using central composite design, Asian Journal of Civil Engineering. 25(1) (2024)1007-1025

DOI: 10.1007/s42107-023-00828-6

Google Scholar

[12] A. Ghosh, G.D.R.N. Ransinchung, P. Kumar, and C.H.H. Zaw, Effect of particle size and proportion of RAP aggregates on the strength durability and microstructure of ambient cured geopolymer concrete mixes, Construction and Building Materials. 455(2024) 139164

DOI: 10.1016/j.conbuildmat.2024.139164

Google Scholar

[13] R. Soltanabadi, and K Behfarnia, Evaluation of mechanical properties of concrete containing recycled concrete aggregate and recycled asphalt pavement, Journal of Materials in Civil Engineering. 34(12) (2022) 04022348

DOI: 10.1061/(ASCE)MT.1943-5533.0004514

Google Scholar

[14] S. Ben Saïd El Euch,S. El Euch Khay, T. Achour, and A. Loulizi, Modelling of the adhesion between reclaimed asphalt pavement aggregates and hydrated cement paste, Construction and Building Materials. 152 (2017) 839-846

DOI: 10.1016/j.conbuildmat.2017.07.078

Google Scholar

[15] R. Ben Othman, S. El Euch Khay, A. Loulizi, and J. Neji, Laboratory evaluation of an ecological pavement construction material: sand concrete reinforced with polypropylene fibres, European Journal of Environmental and Civil Engineering. 23(3) (2019) 287-299

DOI: 10.1080/19648189.2016.1277372

Google Scholar

[16] A. Bouabdallah, A. Benaissa, M.A. Bouabdallah, S. Malab, and A. Khatir, Development and performance evaluation of self-leveling sand concrete: Enhanced fluidity, mechanical strength, durability, and non-destructive analysis, Construction and Building Materials. 468 (2025) 140463

DOI: 10.1016/j.conbuildmat.2025.140463

Google Scholar

[17] S. El Euch Khay, J. Neji, and A. Loulizi, Compacted Sand Concrete in Pavement Construction: An Economical and Environmental Solution, ACI Materials Journal. 107(2) (2010)

DOI: 10.14359/51663583

Google Scholar

[18] AFNOR. (1996). Béton - Béton de sable. (NF P 18-500). France

Google Scholar

[19] K. Gadri, and A. Guettala, Evaluation of bond strength between sand concrete as new repair material and ordinary concrete substrate (The surface roughness effect), Construction and Building Materials. 157(2017) 1133-1144.

DOI: 10.1016/j.conbuildmat.2017.09.183

Google Scholar

[20] A. Denis, A. Attar, D. Breysse, and J.J. Chauvin, Effect of coarse aggregate on the workability of sandcrete, Cement and Concrete Research, 32(5) (2002) 701-706

DOI: 10.1016/S0008-8846(01)00746-3

Google Scholar

[21] O. Jaradat, K. Gadrı, and A. Guettala, Study the mechanical and physical properties of sand concrete using crushed limestone sand, Journal of Materials and Electronic Devices. 3(1) (2021) 26-29.

Google Scholar

[22] T. Bouziani, M. Bederina, and M. Hadjoudja, Effect of dune sand on the properties of flowing sand-concrete (FSC), International Journal of Concrete Structures and Materials. 6(1) (2012),59-64

DOI: 10.1007/s40069-012-0006-z

Google Scholar

[23] B. Belhadj, M. Bederina, Z. Makhloufi, R.M. Dheilly, N. Montrelay, and M. Quéneudéc, Contribution to the development of a sand concrete lightened by the addition of barley straws, Construction and Building Materials. 113 (2016) 513-522

DOI: 10.1016/j.conbuildmat.2016.03.067

Google Scholar

[24] S. El Euch Khay, J. Neji, and A. Loulizi, Compacted dune sand concrete for pavement applications, Proceedings of the Institution of Civil Engineers-Construction Materials. 164(2) (2011) 87-93

DOI: 10.1680/coma.900049

Google Scholar

[25] M. Hadjadj, M. Guendouz, and D. Boukhelkhal, Mechanical strength and compactness of bio self-compacting sand concrete containing granite industrial waste as fine aggregate, Studies in Engineering and Exact Sciences.5(3) (2024) e12576-e12576

DOI: 10.54021/seesv5n3-038

Google Scholar

[26] D. Belkacem, M.K. Ratiba, and Z. Rebih, Durability enhancement in self-compacting sand concrete using mineral additives, World Journal of Engineering. (ahead-of-print) (2024)

DOI: 10.1108/WJE-03-2024-0126

Google Scholar

[27] I. Benaissa, B. Nasser, S. Aggoun, and S. Malab, Properties of fibred sand concrete sprayed by wet-mix process, Arabian Journal for Science and Engineering. 40 (2015) 2289-2299

DOI: 10.1007/s13369-015-1753-3

Google Scholar

[28] Q. Li, X. Wang, Z. Zou, X. Gao, and Y. Zhao, Dynamic behaviour of manufactured sand shotcrete at early age, Construction and Building Materials. 368 (2023) 130424

DOI: 10.1016/j.conbuildmat.2023.130424

Google Scholar

[29] B. Belhadj, R.M. Dheilly, J. Houessou, and M. Quéneudec, Compressive strength and microstructure analysis of a lightweight sand concrete in sodium sulfate environment, Innovative Infrastructure Solutions. 8(6) (2023) 170

DOI: 10.1007/s41062-023-01136-3

Google Scholar

[30] B. Belhadj, A. Goullieux, M. Bederina, N. Montrelay, and M. Quéneudec, Study of the Mechanical Properties of the Sand Concrete Lightened by Lignocellulosic Materials, In International Symposium on Materials and Sustainable Development Cham: Springer International Publishing (2019) 34-47

DOI: 10.1007/978-3-030-43211-9_4

Google Scholar

[31] S. El Euch Khay, J. Neji, and A. Loulizi, Shrinkage properties of compacted sand concrete used in pavements, Construction and Building Materials. 24(9) (2010) 1790-1795

DOI: 10.1016/j.conbuildmat.2010.02.008

Google Scholar

[32] M.I. Bebhalilou, M. Belachia, H. Houari, and A. Abdelouahed, The study of the characteristics of sand concrete based on marble waste sand, Civil and Environmental Engineering Reports. 30(1) (2020)

DOI: 10.2478/ceer-2020-0010

Google Scholar

[33] M. Guendouz, F. Debieb, O. Boukendakdji, E.H. Kadri, M. Bentchikou, and H. Soualhi, Use of plastic waste in sand concrete, J. Mater. Environ. Sci. 7(2) (2016) 382-389.

Google Scholar

[34] M. Hadjadj, M. Guendouz, D. Boukhelkhal, L. Benatallah, and S. Hamraoui, Optimizing flowable sand concrete with seashells waste and ceramic waste for improved mechanical and durability properties, Studies in Engineering and Exact Sciences. 6(1) (2025) e13459-e13459

DOI: 10.54021/seesv6n1-012

Google Scholar

[35] AFNOR : Ciment - Partie 1 : composition, spécifications et critères de conformité des ciments courants, (NF EN 197-1), France, (2012).

Google Scholar

[36] AFNOR : Essais pour déterminer les caractéristiques géométriques des granulats - Partie 1 : détermination de la granularité - Analyse granulométrique par tamisage, (NF EN 933-1), France, (2012).

Google Scholar

[37] AFNOR : Adjuvants pour bétons, mortier et coulis - Partie 2 : adjuvants pour béton - Définitions, exigences, conformité, marquage et étiquetage, (NF EN 934-2), France, (2012).

Google Scholar

[38] AFNOR: Essais pour déterminer les caractéristiques mécaniques et physiques des granulats - Partie 6: détermination de la masse volumique et du coefficient d'absorption d'eau, (NF EN 1097-6), France (2014).

Google Scholar

[39] AFNOR: Essais pour déterminer les caractéristiques géométriques des granulats - Partie 8: évaluation des fines, Équivalent de sable, (NF EN 933-8), France, (2015).

Google Scholar

[40] T. Sedran, and F. de Larrard, BétonlabPro 2, logiciel de formulation des bétons, Version, 2 (2002) 34-38.

Google Scholar

[41] AFNOR : Essais pour béton frais - Partie 2 : essai d'affaissement, (NF EN 12350-2), France, (2019).

Google Scholar

[42] A. Alwathaf, M.T.A. Jaber, and Y. Hunaiti, Experimental investigation on the Effect of Superplasticizer on Concrete Containing Recycled Asphalt Pavement (RAP), In E3S Web of Conferences. 586 (2024) 04002.

DOI: 10.1051/e3sconf/202458604002

Google Scholar

[43] J. Suebsuk, S. Horpibulsuk, V. Phunpeng, P. Panpipat, K. Chaidachatorn, W. Kroehong, and R. Somna, Concrete mix design: Optimizing recycled asphalt pavement in Portland cement concrete, Construction and Building Materials. 455 (2024) 139180.

DOI: 10.1016/j.conbuildmat.2024.139180

Google Scholar

[44] AFNOR : Essais pour béton durci - Partie 2 : confection et conservation des éprouvettes pour essais de résistance, (NF EN 12390-2), France, (2019).

Google Scholar

[45] AFNOR : Essais pour béton durci - Partie 1 : forme, dimensions et autres exigences aux éprouvettes et aux moules, (NF EN 12390-1), France, (2021).

Google Scholar

[46] AFNOR : Essais pour béton durci – Partie 3 : résistance à la compression des éprouvettes, (NF EN 12390-3), France, (2019).

Google Scholar

[47] AFNOR : Essais pour béton durci – Partie 6 : Détermination de la résistance en traction par fendage d'éprouvettes, (NF EN 12390-6), France, (2012).

Google Scholar

[48] AFNOR : Essai pour béton durci - Partie 13 : détermination du module sécant d'élasticité en compression, (NF EN 12390-13), France, (2021).

Google Scholar

[49] ASTM C642, A.: Standard test method for density, absorption, and voids in hardened concrete, ASTM, ASTM International (2013).

Google Scholar

[50] S. Singh, and G.D. Ransinchung R.N., Durability properties of pavement quality concrete containing fine RAP, Advances in Civil Engineering Materials, 7 (1) 271- 290 (2018)

DOI: 10.1520/ACEM20180012

Google Scholar

[51] S. Debbarma, G. D. Ransinchung, and S. Singh, Feasibility of roller compacted concrete pavement containing different fractions of reclaimed asphalt pavement, Construction and Building Materials, 199 508–525 (2019)

DOI: 10.1016/j.conbuildmat.2018.12.047

Google Scholar

[52] AFNOR: Produits et systèmes pour la protection et la réparation des structures en béton - Méthodes d'essai - Détermination de l'absorption capillaire, (NF EN 13057), France, (2022).

Google Scholar

[53] S. K., Sahdeo, G. D., Ransinchung RN, and A., Singh, Microstructural and pore skeleton characteristics of pervious concrete containing RAP aggregates using X-ray microcomputed tomography and scanning electron microscope, Journal of Transportation Engineering, Part B: Pavements, 147(4) 04021064 (2021)

DOI: 10.1061/JPEODX.0000324

Google Scholar

[54] A.S., Brand, and J.R., Roesler, Reclaimed Asphalt Pavement in Concrete Pavements: Properties, Microstructure, and Design, Proceedings of the International Conference on Concrete Pavements, 11 1 (2025)

DOI: 10.33593/iccp.v11i1.335

Google Scholar

[55] B.B., Bhardwaj, S., Singh, & C.S., Swaroop, Role of asphalt binder film thickness on the behaviour of RAP-incorporated concrete, Construction and Building Materials, 473 141012 (2025)

DOI: 10.1016/j.conbuildmat.2025.141012

Google Scholar

[56] A. Ghosh, G.D.R.N. Ransinchung, and P.Kumar, Influence of key parameters on the performance of RAP-inclusive geopolymer concrete pavements: an approach integrating sensitivity analysis, Construction and Building Materials, 414, 134705 (2024)

DOI: 10.1016/j.conbuildmat.2023.134705

Google Scholar

[57] S.S. Rahman, and M.J. Khattak, Feasibility of reclaimed asphalt pavement geopolymer concrete as a pavement construction material, International Journal of Pavement Research and Technology, 16(4), 888-907 (2023)

DOI: 10.1007/s42947-022-00169-8

Google Scholar

[58] A. Ghosh, G.R. RN, and P. Kumar, Can Reclaimed Asphalt Pavement Aggregates be Effectively Utilized in Designing Paving-Grade Geopolymer Concrete? An Experimental Study with Strength Prediction Using Machine Learning Algorithms, Transportation Research Record, 2678(12), 1905-1922 (2024)

DOI: 10.1177/03611981241253612

Google Scholar

[59] S. Khay, S., A. Loulizi, A., Z. Zayen, Z., and G., Nammouchi, Experimental and predictive study of self-compacting concrete containing reclaimed asphalt pavement. European Journal of Environmental and Civil Engineering, 28 (2024) 3734 – 3748.

DOI: 10.1080/19648189.2024.2357672

Google Scholar

[60] H. Liu, G. Duan, F. Wang, J. Zhang, J. Zhang, and Y. Guo, Numerical simulation of effect of reclaimed asphalt pavement on damage evolution behavior of self-compacting concrete under compressive loading, Construction and Building Materials, 395 (2023), 132323

DOI: 10.1016/j.conbuildmat.2023.132323

Google Scholar

[61] A.M. Neville, Properties of Concrete (5th ed.), Pearson International (2011).

Google Scholar

[62] M. Walker, P. Bamforth, J. Clarke, A. Croft, P. Fookes, and T. Kay, Diagnosis of deterioration in concrete, Concrete Society Technical Report 46 (2000).

Google Scholar

[63] D. Alfonso, M. Dugarte, J. Carrillo, and C.A. Arteta, Effect of aggregate type on the elastic modulus and compressive behavior of concrete: A case study in Colombia, Construction and Building Materials. 411 (2024) 134131

DOI: 10.1016/j.conbuildmat.2023.134131

Google Scholar

[64] C. Lin, Y. Sun, W. Jiao, J. Zheng, Z. Li, and S. Zhang, Prediction of compressive strength and elastic modulus for recycled aggregate concrete based on AutoGluon, Sustainability. 15(16) (2023) 12345.

DOI: 10.3390/su151612345

Google Scholar

[65] R.W. Sun, and G.C. Fanourakis, An assessment of factors affecting the elastic modulus of concrete, Structural Concrete. 23(1) (2022) 593-603

DOI: 10.1002/suco.202000553

Google Scholar

[66] V. Revilla-Cuesta, R. Serrano-López, A.B. Espinosa, V. Ortega-López, and M. Skaf, Analyzing the relationship between compressive strength and modulus of elasticity in concrete with ladle furnace slag, Buildings. 13(12) (2023) 3100

DOI: 10.3390/buildings13123100

Google Scholar

[67] J.C. Kim, and W.Y. Lim, Prediction of compressive strength and elastic modulus for ultra-high-performance concrete, Construction and Building Materials. 363 (2023)129883

DOI: 10.1016/j.conbuildmat.2022.129883

Google Scholar

[68] A. Del Savio, D. La Torre Esquivel, J. Carrillo, and E. Yep, Determination of Polypropylene Fiber-Reinforced Concrete Compressive Strength and Elasticity Modulus via Ultrasonic Pulse Tests, Applied Sciences. 12(20) (2022) 10375

DOI: 10.3390/app122010375

Google Scholar

[69] Federation Internationale du Beton: Fib Bulletin 55, Model Code 2010, First complete draft. (vol. 1), 434p, Lousianne, USA (2013).

Google Scholar

[70] ACI 318: Building code requirements for structural concrete and commentary, American Concrete Institute, Farmington Hills, MI, USA (2014).

Google Scholar

[71] Eurocode 2. European Standard: Design of concrete structures – part 1-1, general rules and rules for buildings, Bruxelas, (2004).

Google Scholar