[1]
I. Boussetta, S. El Euch Khay, and J. Neji, Comprehensive Study on Mechanical and Transport Properties of Roller-Compacted Concrete Incorporating Reclaimed Asphalt Pavement, International Journal of Engineering Research in Africa. 71 (2024) 61-78
DOI: 10.4028/p-ZrpJX0
Google Scholar
[2]
W. Taktak, and A. Loulizi, Selection of a pavement structure from technically established alternatives based on construction cost, energy consumption, and carbon footprint, International Journal of Engineering Research in Africa. 62 (2022) 85-106
DOI: 10.4028/p-xx05a5
Google Scholar
[3]
S. El Euch Ben Said, S. El Euch Khay, and A. Loulizi, Experimental Investigation of PCC Incorporating RAP, International Journal of Concrete Structures and Materials. 12(1) (2018) 1-11
DOI: 10.1186/s40069-018-0227-x
Google Scholar
[4]
S. Singh, G.D. Ransinchung, and P. Kumar, Feasibility study of RAP aggregates in cement concrete pavements, Road Materials and Pavement Design. 20(1) (2019) 151-170
DOI: 10.1080/14680629.2017.1380071
Google Scholar
[5]
C. Pandiya, and A.K. Saxena, Effect of Reclaimed Asphalt Pavement Aggregate on Hardened Properties of Concrete, International Journal for Research in Applied Science & Engineering Technology. 9(6) (2021) 1168-1172
DOI: 10.22214/ijraset.2021.38776
Google Scholar
[6]
S.K. Sahdeo, G. Ransinchung , K.L. Rahul, and S. Debbarma, Reclaimed asphalt pavement as a substitution to natural coarse aggregate for the production of sustainable pervious concrete pavement mixes, Journal of Materials in Civil Engineering. 33(2) (2021) 04020469. https://doi.org/10.1061/(ASCE)MT.1943- 5533.0003555
DOI: 10.1061/(asce)mt.1943-5533.0003555
Google Scholar
[7]
G.Masi, A. Michelacci, S.Manzi, and M.C. Bignozzi, Assessment of reclaimed asphalt pavement (Rap) as recycled aggregate for concrete, Construction and Building Materials. 341(2022) 127745. https://doi. org/
DOI: 10.1016/j.conbuildmat.2022.127745
Google Scholar
[8]
R. Vasudeva, Influence of reclaimed asphalt pavement aggregates on strength and durability properties of concrete mixes in rigid pavements, The Journal of Engineering Research. 20(1) (2023) 1-11
DOI: 10.53540/tjer.vol20iss2pp1-11
Google Scholar
[9]
C.G. Papakonstantinou, Resonant column testing on Portland cement concrete containing recycled asphalt pavement (RAP) aggregates, Construction and Building Materials. 173 (2018) 419-428
DOI: 10.1016/j.conbuildmat.2018.03.256
Google Scholar
[10]
A. Almusawi, M.M. Jaleel, S. Shoman, and A.P. Lupanov, Enhancing waste asphalt durability through cold recycling and additive integration, Functional Composite Materials. 5(1) (2024) 10
DOI: 10.1186/s42252-024-00061-7
Google Scholar
[11]
M.D. Rout, K. Shubham, S. Biswas, and A.K. Sinha, An integrated evaluation of waste materials containing recycled asphalt fine aggregates using central composite design, Asian Journal of Civil Engineering. 25(1) (2024)1007-1025
DOI: 10.1007/s42107-023-00828-6
Google Scholar
[12]
A. Ghosh, G.D.R.N. Ransinchung, P. Kumar, and C.H.H. Zaw, Effect of particle size and proportion of RAP aggregates on the strength durability and microstructure of ambient cured geopolymer concrete mixes, Construction and Building Materials. 455(2024) 139164
DOI: 10.1016/j.conbuildmat.2024.139164
Google Scholar
[13]
R. Soltanabadi, and K Behfarnia, Evaluation of mechanical properties of concrete containing recycled concrete aggregate and recycled asphalt pavement, Journal of Materials in Civil Engineering. 34(12) (2022) 04022348
DOI: 10.1061/(ASCE)MT.1943-5533.0004514
Google Scholar
[14]
S. Ben Saïd El Euch,S. El Euch Khay, T. Achour, and A. Loulizi, Modelling of the adhesion between reclaimed asphalt pavement aggregates and hydrated cement paste, Construction and Building Materials. 152 (2017) 839-846
DOI: 10.1016/j.conbuildmat.2017.07.078
Google Scholar
[15]
R. Ben Othman, S. El Euch Khay, A. Loulizi, and J. Neji, Laboratory evaluation of an ecological pavement construction material: sand concrete reinforced with polypropylene fibres, European Journal of Environmental and Civil Engineering. 23(3) (2019) 287-299
DOI: 10.1080/19648189.2016.1277372
Google Scholar
[16]
A. Bouabdallah, A. Benaissa, M.A. Bouabdallah, S. Malab, and A. Khatir, Development and performance evaluation of self-leveling sand concrete: Enhanced fluidity, mechanical strength, durability, and non-destructive analysis, Construction and Building Materials. 468 (2025) 140463
DOI: 10.1016/j.conbuildmat.2025.140463
Google Scholar
[17]
S. El Euch Khay, J. Neji, and A. Loulizi, Compacted Sand Concrete in Pavement Construction: An Economical and Environmental Solution, ACI Materials Journal. 107(2) (2010)
DOI: 10.14359/51663583
Google Scholar
[18]
AFNOR. (1996). Béton - Béton de sable. (NF P 18-500). France
Google Scholar
[19]
K. Gadri, and A. Guettala, Evaluation of bond strength between sand concrete as new repair material and ordinary concrete substrate (The surface roughness effect), Construction and Building Materials. 157(2017) 1133-1144.
DOI: 10.1016/j.conbuildmat.2017.09.183
Google Scholar
[20]
A. Denis, A. Attar, D. Breysse, and J.J. Chauvin, Effect of coarse aggregate on the workability of sandcrete, Cement and Concrete Research, 32(5) (2002) 701-706
DOI: 10.1016/S0008-8846(01)00746-3
Google Scholar
[21]
O. Jaradat, K. Gadrı, and A. Guettala, Study the mechanical and physical properties of sand concrete using crushed limestone sand, Journal of Materials and Electronic Devices. 3(1) (2021) 26-29.
Google Scholar
[22]
T. Bouziani, M. Bederina, and M. Hadjoudja, Effect of dune sand on the properties of flowing sand-concrete (FSC), International Journal of Concrete Structures and Materials. 6(1) (2012),59-64
DOI: 10.1007/s40069-012-0006-z
Google Scholar
[23]
B. Belhadj, M. Bederina, Z. Makhloufi, R.M. Dheilly, N. Montrelay, and M. Quéneudéc, Contribution to the development of a sand concrete lightened by the addition of barley straws, Construction and Building Materials. 113 (2016) 513-522
DOI: 10.1016/j.conbuildmat.2016.03.067
Google Scholar
[24]
S. El Euch Khay, J. Neji, and A. Loulizi, Compacted dune sand concrete for pavement applications, Proceedings of the Institution of Civil Engineers-Construction Materials. 164(2) (2011) 87-93
DOI: 10.1680/coma.900049
Google Scholar
[25]
M. Hadjadj, M. Guendouz, and D. Boukhelkhal, Mechanical strength and compactness of bio self-compacting sand concrete containing granite industrial waste as fine aggregate, Studies in Engineering and Exact Sciences.5(3) (2024) e12576-e12576
DOI: 10.54021/seesv5n3-038
Google Scholar
[26]
D. Belkacem, M.K. Ratiba, and Z. Rebih, Durability enhancement in self-compacting sand concrete using mineral additives, World Journal of Engineering. (ahead-of-print) (2024)
DOI: 10.1108/WJE-03-2024-0126
Google Scholar
[27]
I. Benaissa, B. Nasser, S. Aggoun, and S. Malab, Properties of fibred sand concrete sprayed by wet-mix process, Arabian Journal for Science and Engineering. 40 (2015) 2289-2299
DOI: 10.1007/s13369-015-1753-3
Google Scholar
[28]
Q. Li, X. Wang, Z. Zou, X. Gao, and Y. Zhao, Dynamic behaviour of manufactured sand shotcrete at early age, Construction and Building Materials. 368 (2023) 130424
DOI: 10.1016/j.conbuildmat.2023.130424
Google Scholar
[29]
B. Belhadj, R.M. Dheilly, J. Houessou, and M. Quéneudec, Compressive strength and microstructure analysis of a lightweight sand concrete in sodium sulfate environment, Innovative Infrastructure Solutions. 8(6) (2023) 170
DOI: 10.1007/s41062-023-01136-3
Google Scholar
[30]
B. Belhadj, A. Goullieux, M. Bederina, N. Montrelay, and M. Quéneudec, Study of the Mechanical Properties of the Sand Concrete Lightened by Lignocellulosic Materials, In International Symposium on Materials and Sustainable Development Cham: Springer International Publishing (2019) 34-47
DOI: 10.1007/978-3-030-43211-9_4
Google Scholar
[31]
S. El Euch Khay, J. Neji, and A. Loulizi, Shrinkage properties of compacted sand concrete used in pavements, Construction and Building Materials. 24(9) (2010) 1790-1795
DOI: 10.1016/j.conbuildmat.2010.02.008
Google Scholar
[32]
M.I. Bebhalilou, M. Belachia, H. Houari, and A. Abdelouahed, The study of the characteristics of sand concrete based on marble waste sand, Civil and Environmental Engineering Reports. 30(1) (2020)
DOI: 10.2478/ceer-2020-0010
Google Scholar
[33]
M. Guendouz, F. Debieb, O. Boukendakdji, E.H. Kadri, M. Bentchikou, and H. Soualhi, Use of plastic waste in sand concrete, J. Mater. Environ. Sci. 7(2) (2016) 382-389.
Google Scholar
[34]
M. Hadjadj, M. Guendouz, D. Boukhelkhal, L. Benatallah, and S. Hamraoui, Optimizing flowable sand concrete with seashells waste and ceramic waste for improved mechanical and durability properties, Studies in Engineering and Exact Sciences. 6(1) (2025) e13459-e13459
DOI: 10.54021/seesv6n1-012
Google Scholar
[35]
AFNOR : Ciment - Partie 1 : composition, spécifications et critères de conformité des ciments courants, (NF EN 197-1), France, (2012).
Google Scholar
[36]
AFNOR : Essais pour déterminer les caractéristiques géométriques des granulats - Partie 1 : détermination de la granularité - Analyse granulométrique par tamisage, (NF EN 933-1), France, (2012).
Google Scholar
[37]
AFNOR : Adjuvants pour bétons, mortier et coulis - Partie 2 : adjuvants pour béton - Définitions, exigences, conformité, marquage et étiquetage, (NF EN 934-2), France, (2012).
Google Scholar
[38]
AFNOR: Essais pour déterminer les caractéristiques mécaniques et physiques des granulats - Partie 6: détermination de la masse volumique et du coefficient d'absorption d'eau, (NF EN 1097-6), France (2014).
Google Scholar
[39]
AFNOR: Essais pour déterminer les caractéristiques géométriques des granulats - Partie 8: évaluation des fines, Équivalent de sable, (NF EN 933-8), France, (2015).
Google Scholar
[40]
T. Sedran, and F. de Larrard, BétonlabPro 2, logiciel de formulation des bétons, Version, 2 (2002) 34-38.
Google Scholar
[41]
AFNOR : Essais pour béton frais - Partie 2 : essai d'affaissement, (NF EN 12350-2), France, (2019).
Google Scholar
[42]
A. Alwathaf, M.T.A. Jaber, and Y. Hunaiti, Experimental investigation on the Effect of Superplasticizer on Concrete Containing Recycled Asphalt Pavement (RAP), In E3S Web of Conferences. 586 (2024) 04002.
DOI: 10.1051/e3sconf/202458604002
Google Scholar
[43]
J. Suebsuk, S. Horpibulsuk, V. Phunpeng, P. Panpipat, K. Chaidachatorn, W. Kroehong, and R. Somna, Concrete mix design: Optimizing recycled asphalt pavement in Portland cement concrete, Construction and Building Materials. 455 (2024) 139180.
DOI: 10.1016/j.conbuildmat.2024.139180
Google Scholar
[44]
AFNOR : Essais pour béton durci - Partie 2 : confection et conservation des éprouvettes pour essais de résistance, (NF EN 12390-2), France, (2019).
Google Scholar
[45]
AFNOR : Essais pour béton durci - Partie 1 : forme, dimensions et autres exigences aux éprouvettes et aux moules, (NF EN 12390-1), France, (2021).
Google Scholar
[46]
AFNOR : Essais pour béton durci – Partie 3 : résistance à la compression des éprouvettes, (NF EN 12390-3), France, (2019).
Google Scholar
[47]
AFNOR : Essais pour béton durci – Partie 6 : Détermination de la résistance en traction par fendage d'éprouvettes, (NF EN 12390-6), France, (2012).
Google Scholar
[48]
AFNOR : Essai pour béton durci - Partie 13 : détermination du module sécant d'élasticité en compression, (NF EN 12390-13), France, (2021).
Google Scholar
[49]
ASTM C642, A.: Standard test method for density, absorption, and voids in hardened concrete, ASTM, ASTM International (2013).
Google Scholar
[50]
S. Singh, and G.D. Ransinchung R.N., Durability properties of pavement quality concrete containing fine RAP, Advances in Civil Engineering Materials, 7 (1) 271- 290 (2018)
DOI: 10.1520/ACEM20180012
Google Scholar
[51]
S. Debbarma, G. D. Ransinchung, and S. Singh, Feasibility of roller compacted concrete pavement containing different fractions of reclaimed asphalt pavement, Construction and Building Materials, 199 508–525 (2019)
DOI: 10.1016/j.conbuildmat.2018.12.047
Google Scholar
[52]
AFNOR: Produits et systèmes pour la protection et la réparation des structures en béton - Méthodes d'essai - Détermination de l'absorption capillaire, (NF EN 13057), France, (2022).
Google Scholar
[53]
S. K., Sahdeo, G. D., Ransinchung RN, and A., Singh, Microstructural and pore skeleton characteristics of pervious concrete containing RAP aggregates using X-ray microcomputed tomography and scanning electron microscope, Journal of Transportation Engineering, Part B: Pavements, 147(4) 04021064 (2021)
DOI: 10.1061/JPEODX.0000324
Google Scholar
[54]
A.S., Brand, and J.R., Roesler, Reclaimed Asphalt Pavement in Concrete Pavements: Properties, Microstructure, and Design, Proceedings of the International Conference on Concrete Pavements, 11 1 (2025)
DOI: 10.33593/iccp.v11i1.335
Google Scholar
[55]
B.B., Bhardwaj, S., Singh, & C.S., Swaroop, Role of asphalt binder film thickness on the behaviour of RAP-incorporated concrete, Construction and Building Materials, 473 141012 (2025)
DOI: 10.1016/j.conbuildmat.2025.141012
Google Scholar
[56]
A. Ghosh, G.D.R.N. Ransinchung, and P.Kumar, Influence of key parameters on the performance of RAP-inclusive geopolymer concrete pavements: an approach integrating sensitivity analysis, Construction and Building Materials, 414, 134705 (2024)
DOI: 10.1016/j.conbuildmat.2023.134705
Google Scholar
[57]
S.S. Rahman, and M.J. Khattak, Feasibility of reclaimed asphalt pavement geopolymer concrete as a pavement construction material, International Journal of Pavement Research and Technology, 16(4), 888-907 (2023)
DOI: 10.1007/s42947-022-00169-8
Google Scholar
[58]
A. Ghosh, G.R. RN, and P. Kumar, Can Reclaimed Asphalt Pavement Aggregates be Effectively Utilized in Designing Paving-Grade Geopolymer Concrete? An Experimental Study with Strength Prediction Using Machine Learning Algorithms, Transportation Research Record, 2678(12), 1905-1922 (2024)
DOI: 10.1177/03611981241253612
Google Scholar
[59]
S. Khay, S., A. Loulizi, A., Z. Zayen, Z., and G., Nammouchi, Experimental and predictive study of self-compacting concrete containing reclaimed asphalt pavement. European Journal of Environmental and Civil Engineering, 28 (2024) 3734 – 3748.
DOI: 10.1080/19648189.2024.2357672
Google Scholar
[60]
H. Liu, G. Duan, F. Wang, J. Zhang, J. Zhang, and Y. Guo, Numerical simulation of effect of reclaimed asphalt pavement on damage evolution behavior of self-compacting concrete under compressive loading, Construction and Building Materials, 395 (2023), 132323
DOI: 10.1016/j.conbuildmat.2023.132323
Google Scholar
[61]
A.M. Neville, Properties of Concrete (5th ed.), Pearson International (2011).
Google Scholar
[62]
M. Walker, P. Bamforth, J. Clarke, A. Croft, P. Fookes, and T. Kay, Diagnosis of deterioration in concrete, Concrete Society Technical Report 46 (2000).
Google Scholar
[63]
D. Alfonso, M. Dugarte, J. Carrillo, and C.A. Arteta, Effect of aggregate type on the elastic modulus and compressive behavior of concrete: A case study in Colombia, Construction and Building Materials. 411 (2024) 134131
DOI: 10.1016/j.conbuildmat.2023.134131
Google Scholar
[64]
C. Lin, Y. Sun, W. Jiao, J. Zheng, Z. Li, and S. Zhang, Prediction of compressive strength and elastic modulus for recycled aggregate concrete based on AutoGluon, Sustainability. 15(16) (2023) 12345.
DOI: 10.3390/su151612345
Google Scholar
[65]
R.W. Sun, and G.C. Fanourakis, An assessment of factors affecting the elastic modulus of concrete, Structural Concrete. 23(1) (2022) 593-603
DOI: 10.1002/suco.202000553
Google Scholar
[66]
V. Revilla-Cuesta, R. Serrano-López, A.B. Espinosa, V. Ortega-López, and M. Skaf, Analyzing the relationship between compressive strength and modulus of elasticity in concrete with ladle furnace slag, Buildings. 13(12) (2023) 3100
DOI: 10.3390/buildings13123100
Google Scholar
[67]
J.C. Kim, and W.Y. Lim, Prediction of compressive strength and elastic modulus for ultra-high-performance concrete, Construction and Building Materials. 363 (2023)129883
DOI: 10.1016/j.conbuildmat.2022.129883
Google Scholar
[68]
A. Del Savio, D. La Torre Esquivel, J. Carrillo, and E. Yep, Determination of Polypropylene Fiber-Reinforced Concrete Compressive Strength and Elasticity Modulus via Ultrasonic Pulse Tests, Applied Sciences. 12(20) (2022) 10375
DOI: 10.3390/app122010375
Google Scholar
[69]
Federation Internationale du Beton: Fib Bulletin 55, Model Code 2010, First complete draft. (vol. 1), 434p, Lousianne, USA (2013).
Google Scholar
[70]
ACI 318: Building code requirements for structural concrete and commentary, American Concrete Institute, Farmington Hills, MI, USA (2014).
Google Scholar
[71]
Eurocode 2. European Standard: Design of concrete structures – part 1-1, general rules and rules for buildings, Bruxelas, (2004).
Google Scholar