Study of the Impact of Ambient Temperature on the Maximum Temperature Reached by a PV Solar Panel

Article Preview

Abstract:

The increase in the temperature of photovoltaic (PV) cells is a critical factor that negatively affects the efficiency of converting solar radiation into electrical energy. This phenomenon not only reduces energy conversion efficiency but also causes damage to PV components, thereby preventing the achievement of the intended energy production goals. Moreover, the heating of PV modules has two significant impacts: first, a reduction in energy efficiency, and second, a decrease in the lifespan of the solar cells. Therefore, projects aimed at producing clean electrical energy using PV solar panels must consider the study of installation sites for PV solar plants and the impact of environmental conditions on panel performance. Given that an increase in PV cell temperature reduces their productivity, this study examines the impact of ambient temperature on the maximum temperature reached by a PV solar panel and analyzes the results. The results show that installing solar panels in harsh environments characterized by high temperatures, such as Ouarzazate in Morocco, can cause these panels to reach critical temperature thresholds of up to 115°C under high solar flux, which can lead to solar system failure and thus the failure of the entire project. In addition, the heating of photovoltaic modules has two major impacts: firstly, energy efficiency is reduced by around 0.44% for every 1°C increase, and overall efficiency is reduced from 16% to less than 10% under extreme conditions; secondly, solar cell life is shortened. Finally, this study highlights the importance of carrying out thorough climatic and environmental assessments before establishing solar photovoltaic power plants. It also highlights the importance of employing high-performance cooling systems or innovative technologies to reduce the impact of heat on photovoltaic panels. This approach is essential to ensure the longevity and efficiency of solar photovoltaic installations, and to achieve our ambitions for sustainable, green energy production.

You might also be interested in these eBooks

Info:

Pages:

17-32

Citation:

Online since:

November 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Shams, M.S.S. Danish, N.R. Sabory, Solar energy market and policy instrument analysis to support sustainable development, Sustainability outreach in developing countries. (2021) 113-132.

DOI: 10.1007/978-981-15-7179-4_8

Google Scholar

[2] D. Moskovkin, A.M. Mathew, Q. Guo, R. Eyetsemitan, T.U. Daim, Landscape analysis: Regulations, policies, and innovation in photovoltaic industry, Infrastructure and Technology Management: Contributions from the Energy, Healthcare and Transportation Sectors. (2018) 3-17.

DOI: 10.1007/978-3-319-68987-6_1

Google Scholar

[3] G.R. Timilsina, L. Kurdgelashvili, P.A. Narbel, Solar energy: Markets, economics and policies. Renewable & Sustainable Energy Reviews. 16(1), (2012) 449–465.

DOI: 10.1016/j.rser.2011.08.009

Google Scholar

[4] C. Breyer, O. Koskinen, P. Blechinger, Profitable climate change mitigation: The case of greenhouse gas emission reduction benefits enabled by solar photovoltaic systems, Renewable & Sustainable Energy Reviews. 49 (2015) 610–628.

DOI: 10.1016/j.rser.2015.04.061

Google Scholar

[5] M.P. Mahmud, N. Huda, S.H. Farjana, C. Lang, Environmental impacts of solar-photovoltaic and solar-thermal systems with life-cycle assessment, Energies. 11(9) (2018) 2346.

DOI: 10.3390/en11092346

Google Scholar

[6] H. Darwish, W. Darwish, Impact of solar photovoltaic technology on GHGs reduction - a case study in Jordan, Nafta Gaz. 79(12) (2023) 809–813.

DOI: 10.18668/ng.2023.12.07

Google Scholar

[7] M. Abid, M. Kumar, V.K.P. Raj, M.J Dhas, Environmental Impacts of the Solar Photovoltaic Systems in the Context of Globalization, Ecological Engineering & Environmental Technology. 24(2) (2023) 231–240.

DOI: 10.12912/27197050/157168

Google Scholar

[8] S. Vunnam, M. Vanithasri, R.R. Alla, An outline of solar photovoltaic systems impact on environment, Bulletin of Electrical Engineering and Informatics. 12(5) (2023) 2635–2642.

DOI: 10.11591/eei.v12i5.5584

Google Scholar

[9] J.G. Ingersoll, Simplified calculation of solar cell temperatures in terrestrial photovoltaic arrays. (1986) 95-101.

DOI: 10.1115/1.3268087

Google Scholar

[10] A. Metz, R. Hezel, Record efficiencies above 21% for MIS-contacted diffused junction silicon solar cells, Photovoltaic Specialists Conference. (1997) 283–286.

DOI: 10.1109/pvsc.1997.654084

Google Scholar

[11] T.A. Louis, I. Tertsea, Environmental Factors and the Performance of PV Panels: An Experimental Investigation, African Journal of Environment and Natural Science Research. (2023).

Google Scholar

[12] S. Krauter, R. Hanitsch, P. Campbell, S.R. Wenham, Simulation tool for prediction and optimization of output power considering thermal and optical parameters of PV module encapsulation, In Proceedings of 12th European Photovoltaic Solar Energy Conference, Amsterdam, Holland, 1994, pp.1194-1197.

Google Scholar

[13] S. Dubey, J.N. Sarvaiya, B. Seshadri, Temperature dependent photovoltaic (PV) efficiency and its effect on PV production in the world–a review. Energy procedia. 33 (2013) 311-321.

DOI: 10.1016/j.egypro.2013.05.072

Google Scholar

[14] P.K. Bataglannis, Thermal assessment of silicon-based composite materials used in photovoltaics. (2003).

Google Scholar

[15] V. Tsykh, A. Kulchak, A. Yavorskyi, Analysis of research on the influence of temperature on the degradation and efficiency of solar panels. (2024).

DOI: 10.20535/1813-5420.2.2024.303071

Google Scholar

[16] C. Wani, K.K. Gupta, Towards improving the performance of solar photovoltaic energy system: A review. 227(2), 022009, (2019).

Google Scholar

[17] J. Adeeb, A.F. Farhan, A. Al-Salaymeh, Temperature Effect on Performance of Different Solar Cell Technologies. Journal of Ecological Engineering. 20(5), (2019) 249–254.

DOI: 10.12911/22998993/105543

Google Scholar

[18] S. Poddar, F. Rougieux, J.P. Evans, M. Kay, A.A. Prasad, S.P. Bremner, Accelerated degradation of photovoltaic modules under a future warmer climate, Progress in Photovoltaics: Research and Applications. 32(7), (2024) 456-467.

DOI: 10.1002/pip.3788

Google Scholar

[19] W. Xu, How important of the effect of temperature on the efficiency of solar photovoltaic cells? Advances in Engineering Innovation. 10(1), (2024) 85–100.

DOI: 10.54254/2977-3903/10/2024106

Google Scholar

[20] S. Sargunanathan, A. Elango, S.T. Mohideen, Performance enhancement of solar photovoltaic cells using effective cooling methods: A review. Renewable & Sustainable Energy Reviews. 64, (2016) 382–393.

DOI: 10.1016/j.rser.2016.06.024

Google Scholar

[21] H.M.S. Bahaidarah, A.A.B. Baloch, P. Gandhidasan, Uniform cooling of photovoltaic panels: A review. Renewable & Sustainable Energy Reviews. 57, (2016) 1520–1544.

DOI: 10.1016/j.rser.2015.12.064

Google Scholar

[22] B. Nehme, N.K. M'Sirdi, T. Akiki, B. Zeghondy, Assessing the effect of temperature on degradation modes of pv panels. In 2020 5th International Conference on Renewable Energies for Developing Countries (REDEC). IEEE. (2020). pp.1-4.

DOI: 10.1109/redec49234.2020.9163604

Google Scholar

[23] K. Guzik, A. Burkowicz, J. Szlugaj, The EU's demand for selected critical raw materials used in the photovoltaic industry, Gospodarka Surowcami Mineralnymi-Mineral Resources Management. (2022) 31-59.

DOI: 10.24425/gsm.2022.141666

Google Scholar

[24] H. Sverdrup, H. Haraldsson, Assessing the Long-Term Sustainability of Germanium Supply and Price Using the WORLD7 Integrated Assessment Model, Biophysical Economics and Sustainability. 9(4) (2024) 1-33.

DOI: 10.1007/s41247-024-00121-3

Google Scholar

[25] A. Saad, Analyzing the lifecycle of solar panels including raw material sourcing, manufacturing and end-of-life disposal, World Journal of Advanced Engineering Technology and Sciences. 13(1), (2024) 966–978.

DOI: 10.30574/wjaets.2024.13.1.0478

Google Scholar

[26] R. Lv, T. Jing, J.N. Jaubert, G. Xing, Highly Accelerated Thermal Cycling Test for New Type of Crystalline Silicon Photovoltaic Modules. Photovoltaic Specialists Conference. (2019) .pp.1991-1994.

DOI: 10.1109/pvsc40753.2019.8980494

Google Scholar

[27] D. Jordan, C. Deline, M.G. Deceglie, T.J. Silverman, W. Luo, PV Degradation – Mounting & Temperature, Photovoltaic Specialists Conference, (2019) 0673–0679.

DOI: 10.1109/pvsc40753.2019.8980767

Google Scholar

[28] D.C. Jordan, S.R. Kurtz, Photovoltaic degradation rates—an analytical review, Progress in photovoltaics: Research and Applications, 21(1), (2013) 12-29.

DOI: 10.1002/pip.1182

Google Scholar

[29] W.E. Horne, « Solarenergy system ». Patent no. US5269851. (1993).

Google Scholar

[30] V. Marson, G. Bertacco dos Santos, J.B. Campos Silva, E.M. Cardoso, Thermoregulation of integrated photovoltaic panels with bio-based phase change materials. (2024).

DOI: 10.55592/cilamce.v6i06.8273

Google Scholar

[31] T. Rahman, A.A. Mansur, M.S. Hossain Lipu, S. Rahman, R.H. Ashique, M.A. Houran, R.M. Elavarasan, E. Hossain, Investigation of Degradation of Solar Photovoltaics: A Review of Aging Factors, Impacts, and Future Directions toward Sustainable Energy Management, Energies. 16(9), (2023) 3706.

DOI: 10.3390/en16093706

Google Scholar

[32] J. Ascencio-Vásquez, I. Kaaya, K. Brecl, K.A. Weiss, M. Topič, Global Climate Data Processing and Mapping of Degradation Mechanisms and Degradation Rates of PV Modules. Energies. 12(24), (2019) 4749.

DOI: 10.3390/en12244749

Google Scholar

[33] N. Park, C. Han, J. Jeong, D. Kim, Lifetime prediction model of thermal fatigue stress on crystalline silicon photovoltaic module, Photovoltaic Specialists Conference. (2013) 1575–1578.

DOI: 10.1109/pvsc.2013.6744446

Google Scholar

[34] D. Sonawane, P.C. Ramamurthy, P. Kumar, Mechanical Reliability of Photovoltaic Cells under Cyclic Thermal Loading, Journal of Electronic Materials, 49(1) (2020) 59–71.

DOI: 10.1007/s11664-019-07618-4

Google Scholar

[35] F.K.A. Nyarko, G. Takyi, F.B. Effah, Impact of the constitutive behaviour of the encapsulant on thermo-mechanical damage in (c-Si) solar PV modules under thermal cycling. Scientific African. 12 (2021) e00767.

DOI: 10.1016/j.sciaf.2021.e00767

Google Scholar

[36] H. Han, X. Dong, H. Lai, H. Yan, K. Zhang, J. Liu, P.J. Verlinden, Z. Liang, H. Shen, Analysis of the Degradation of Monocrystalline Silicon Photovoltaic Modules After Long-Term Exposure for 18 Years in a Hot–Humid Climate in China, IEEE Journal of Photovoltaics. 8(3) (2018) 806–812.

DOI: 10.1109/jphotov.2018.2819803

Google Scholar

[37] S. Kawai, T. Tanahashi, Y. Fukumoto, F. Tamai, A. Masuda, M. Kondo, Causes of Degradation Identified by the Extended Thermal Cycling Test on Commercially Available Crystalline Silicon Photovoltaic Modules. IEEE Journal of Photovoltaics. 7(6) (2017) 1511–1518.

DOI: 10.1109/jphotov.2017.2741102

Google Scholar

[38] C.C. Roberts, B.H. King, Thermal behaviors of ethylene vinyl acetate encapsulants in fielded silicon photovoltaic modules, Journal of Applied Polymer Science. (2023).

DOI: 10.1002/app.54337

Google Scholar

[39] M.N. Kumar, B. Bora, A. Dhar, D. Yadav, J. Prakash, C. Banerjee, After Lifetime Reliability and Performance Analysis of PV Modules, In International Conference on Advances in Energy Research, Springer Nature Singapore. (2022). pp.199-207.

DOI: 10.1007/978-981-99-2283-3_17

Google Scholar

[40] V.L.S. Tan, P. Dias, N.L. Chang, R. Deng, Estimating the Lifetime of Solar Photovoltaic Modules in Australia, Sustainability. 14(9) (2022) 5336.

DOI: 10.3390/su14095336

Google Scholar

[41] A. Royne, « Coolingdevices for denselypacked, high concentration PV arrays ». MScThesis, University of Sydney. (2005).

Google Scholar

[42] R. de O. Azevêdo, P.R. Junior, L.C.S. Rocha, G Chicco, G. Aquila, R.S. Peruchi, Identification and Analysis of Impact Factors on the Economic Feasibility of Photovoltaic Energy Investments, Sustainability, 12(17) (2020) 7173.

DOI: 10.3390/su12177173

Google Scholar

[43] J. Yang, Z. Li, J. Gan, J. Zhang, Life Cycle Cost Analysis of Photovoltaic Plant Based on Interval Number Theory. IEEE International Conference on Cyber Technology in Automation, Control, and Intelligent Systems. (2018) 1144–1148.

DOI: 10.1109/cyber.2018.8688250

Google Scholar

[44] M.C. Mapako, Provision of long-term maintenance support for solar photovoltaic systems. Lessons from a Zimbabwean NGO, Journal of Energy in Southern Africa. 16(4) (2005) 21-26.

Google Scholar

[45] E.P.H. His, J.C.P. Shieh, Insurability of PV Performance Liability and its Impact on Overall PV Financing Costs, Photovoltaic Specialists Conference (PVSC), 2019, pp.1653-1655.

DOI: 10.1109/pvsc40753.2019.8980814

Google Scholar

[46] Z. R. Tahir, A. Kanwal, M.N. Asim, M. Bilal, M., Abdullah, S. Saleem, M.A. Mujtaba, I. Veza, M. Mousa, M.A. Kalam, Effect of Temperature and Wind Speed on Efficiency of Five Photovoltaic Module Technologies for Different Climatic Zones, Sustainability, 14(23), (2022) 15810.

DOI: 10.3390/su142315810

Google Scholar

[47] D. Sato, N. Yamada, Review of photovoltaic module cooling methods and performance evaluation of the radiative cooling method. Renewable & Sustainable Energy Reviews, 104, 2019, p.151–166.

DOI: 10.1016/j.rser.2018.12.051

Google Scholar

[48] G. Perrakis, A.C. Tasolamprou, G. Kenanakis, E.N Economou, S. Tzortzakis, M. Kafesaki, Passive radiative cooling and other photonic approaches for the temperature control of photovoltaics: a comparative study for crystalline silicon-based architectures. Optics Express. 28(13) (2020) 18548–18565.

DOI: 10.1364/oe.388208

Google Scholar

[49] J. H. Lienhard V and J. H. Lienhard IV, A Heat Transfer TextBook, https://ahtt.mit.edu. (2024).

Google Scholar

[50] M.J. Huang, P.C. Eames, B. Norton, Thermal regulation of building-integrated photovoltaics using phase change materials, International Journal of heat and mass transfer. 47(12-13), (2004) 2715-2733.

DOI: 10.1016/j.ijheatmasstransfer.2003.11.015

Google Scholar

[51] D. Chaatouf, M. Salhi, A. Bria et al, B. Raillani, S. Amraqui and A. Mezrhab, Numerical and experimental evaluation of the thermal and dynamic performance of a phase change material in an indirect solar dryer, International Journal of Refrigeration. 174 (98-110), (2025).

DOI: 10.1016/j.ijrefrig.2025.02.006

Google Scholar

[52] Terrestrial photovoltaic (PV) modules - Design qualification and type approval - Part 1-4: Special requirements for testing of thin-film Cu(In,Ga)(S,Se)2 based photovoltaic (PV) modules (Adopted IEC 61215-1-4:2 2021, 1st edition, 2021-12).

DOI: 10.3403/30436293

Google Scholar

[53] S. A. Alfytouri, G. G. Hashem, A. A. Abdalla, E. A. Elabeedy, Numerical Prediction of PV Cell Temperature and Its Impact on Module Performance in Benghazi-Case Study, 2023 IEEE 11th International Conference on Systems and Control (ICSC), (2023) 318–322.

DOI: 10.1109/icsc58660.2023.10449757

Google Scholar

[54] C. Karaca, S. Yaver, Determining the Effect of Photovoltaic Module Surface Temperature on Generation Efficiency, Ingenieria e Investigacion, 44(2), (2024) e106383.

DOI: 10.15446/ing.investig.106383

Google Scholar

[55] A. K. Tripathi, S. Ray, M. Aruna, Analysis on Photovoltaic Panel Temperature Under the Influence of Solar Radiation and Ambient Temperature, 2021 International Conference on Advances in Electrical, Computing, Communication and Sustainable Technologies (ICAECT), (2021) 1-5.

DOI: 10.1109/icaect49130.2021.9392619

Google Scholar

[56] E. Gedik, Experimental Investigation of Module Temperature Effect on Photovoltaic Panels Efficiency, Journal of Polytechnic, 19(4), (2016) 569–576.

Google Scholar

[57] H. K. Khyani, J. Vajpai, R. Karwa, M. Bhadu, Thermal Modeling of Photovoltaic Panel for Cell Temperature and Power Output Predictions Under Outdoor Climatic Conditions of Jodhpur, Journal of Electrical and Computer Engineering, 2023(1), (2023) 5973076.

DOI: 10.1155/2023/5973076

Google Scholar