[1]
P.V. Sivapullaiah, Effects of Soil Pollution on Geotechnical Behavior of Soils, Indian Geotechnical Conference IGC (2009), GUNTUR, India. Information on https://www.academia.edu/3055104/EFFECTS_OF_SOIL_POLLUTION_ON_GEOTECHNICAL_BEHAVIOUR_OF_SOILS
DOI: 10.3233/978-1-61499-656-9-2441
Google Scholar
[2]
H. Gadouri, K . Harichan, M. Ghrici, A comparison study between CaSO4·2H2O and Na2SO4 effects on geotechnical properties of clayey soils stabilized with mineral additives to recommend adequate mixtures as materials for road pavements. International Journal of Geotechnical Engineering. 11 (2017) 526-533.
DOI: 10.1080/19386362.2017.1320850
Google Scholar
[3]
H. Gadouri, K. Harichan, M. Ghrici, Effects of Na2SO4 on the geotechnical properties of clayey soils stabilize with mineral additives, International Journal of Geotechnical Engineering. 11 (2017) 500-512.
DOI: 10.1080/19386362.2016.1238562
Google Scholar
[4]
H. Gadouri, Behavior of Natural Pozzolana-Lime-stabilized Clayey Soils Artificially Contaminated by Sulfates, Jordan Journal of Civil Engineering. 17 (2023).
DOI: 10.14525/jjce.v17i4.07
Google Scholar
[5]
H. Gadouri, K. Harichan, M. Ghrici, Assessment of sulphates effect on pH and pozzolanic reactions of soil–lime–natural pozzolana mixtures, International Journal of Pavement Engineering, (2017) 761-774
DOI: 10.1080/10298436.2017.1337119
Google Scholar
[6]
N. Cabane, Sols traités à la chaux et aux liants hydrauliques: Contribution à l'identification et à l'analyse des éléments perturbateurs de la stabilisation. Matériaux. Université Jean Monnet - Saint-Étienne, (2004). Information on : theses.hal.science/tel-00010521/document
Google Scholar
[7]
O. Cuisinier, T. Le Borgne, F. Masrouri, Quantification of the Effects of Nitrates, Phosphates and Chlorides on Soil Stabilization with Lime and Cement. Engineering Geology. 117 (2010) 229–235.
DOI: 10.1016/j.enggeo.2010.11.002
Google Scholar
[8]
L. Saussaye, H. Rica, C. Boutouil, M.Baraud, F. L. Leleyter, Influence of salt-forming anions on the geotechnical properties of a stabilized soil with hydraulic binders: effect of cation type. International Journal of Geotechnical Engineering, Road Materials and Pavement Design. 21 (2020) 1439-1453
DOI: 10.1080/14680629.2018.1553729
Google Scholar
[9]
M. G. A .Eltarabily, A.M. Negm, V. O. C. Saavedra, K. E. Gafar, Effects of di-ammonium phosphate on hydraulic, compaction, and shear strength characteristics of sand and clay soils. Arab Journal of Geosciences. 8 (2015) 10419–10432
DOI: 10.1007/s12517-015-1959-4
Google Scholar
[10]
S.Cyrus, T. G. S. Kumar, B. M.Abraham, A.Sridharan, B. T Jose. Effect of industrial wastes on the physical and engineering properties of soils. Indian Geotechnical Conference, 2010, Geo Trendz. Proceedings. Ludhiana: IGS, (2010). Information on: https://typeset.io/papers/effect-of-industrial-wastes-on-the-physical-and-engineering-2i6m6xfou7.
Google Scholar
[11]
P. Benard, Etude de l'action des phosphates présents dans l'eau de gâchage sur l'hydratation d'un ciment Portland. (2005), Ph.D. thesis, University of Bourgogne. Information on theses.hal.science/hal-00015367/document
Google Scholar
[12]
A. M. Alshammari, A. O. S. Baghabra, S. A. Aiban, T. A. Saleh, Phosphoric acid contaminated calcareous soils: Volume change and morphological properties. Powder Technology. v 352 (2019) 340-349.
DOI: 10.1016/j.powtec.2019.04.039
Google Scholar
[13]
R. V. P. Chavali, P. R. P. Reddy, V. R. Murthy, P.V. Sivapullaiah. Swelling characteristics of soils subjected to acid contamination, Soils and Foundations. v. 58, n. 1 (2018) 110-121.
DOI: 10.1016/j.sandf.2017.11.005
Google Scholar
[14]
A. Kassim, H. Nur, Characterization of phosphoric acid- and lime-stabilized tropical lateritic clay. Environmental Earth Sciences. v 63 (2011) 1057–1066
DOI: 10.1007/s12665-010-0781-2
Google Scholar
[15]
A. Marquees, S. Syahril, The Effect of Adding Lime and Phosphoric Acid for Soft Soil Improvement on Unconfined Compressive Strength Value, Proceedings of the 2nd International Seminar of Science and Applied Technology (ISSAT). (2021)
DOI: 10.2991/aer.k.211106.035
Google Scholar
[16]
K. Harichane, M. Ghrici, W. Khebizi, H. Missoum. Effect of the combination of lime and natural pozzolana on the durability of clayey soils, Environ Earth Sci. v66 (2012) 2197–2205
DOI: 10.1007/s12665-011-1441-x
Google Scholar
[17]
A.A.E. Driss, K. Harichane, M. Ghrici, A.M. Salih. Enhancing Geotechnical Properties of Expansive Clay with Lime and Natural Pozzolana: Experimental and Microstructural Analysis. Arab J Sci Eng. v 50 (2025) 1-25
DOI: 10.1007/s13369-025-09990-2
Google Scholar
[18]
F.B. Ziane , A. Youcfi, A.A.E . Driss, M. Ghrici , Improved of Mechanical Characteristics of Gargar Mud by Mineral Additives. Civil and Environmental Engineering Reports. v 33 (2023) 73-94
DOI: 10.59440/ceer/181197
Google Scholar
[19]
A.A.E. Driss, , K. Harichane, M Ghrici, S. Sert, E. Bol. Effect of Natural Pozzolana on the Unconsolidated Undrained Shear Strength of a Lime-Stabilized Clay Soil. Int J Civ Eng. v 21 (2023) 1007–1026
DOI: 10.1007/s40999-023-00817-5
Google Scholar
[20]
E. Kerstin, F. Nieto, J.M. Azañón. Effects of lime treatments on marls. Applied Clay Science, v. 135 (2017) 611-619
DOI: 10.1016/j.clay.2016.10.047
Google Scholar
[21]
A. Seco, F. Ramírez, L. Miqueleiz, B. García, E. Prieto. The use of non-conventional additives in marls stabilization. Applied Clay Science. 51 (2011) 419-423.
DOI: 10.1016/j.clay.2010.12.032
Google Scholar
[22]
V. R. Ouhadi, R. N. Yong. The role of clay fractions of marly soils on their post-stabilization failure. Engineering Geology. 70 (2003) 365-375.
DOI: 10.1016/S0013-7952(03)00104-2
Google Scholar
[23]
L. Miqueleiz, F. Ramirez, J.E. Oti, A. Seco, J.M. Kinuthia, I. Oreja, P. Urmeneta aP. Alumina filler waste as clay replacement material for unfired brick production. Engineering Geology. 163 (2013) 68-74.
DOI: 10.1016/j.enggeo.2013.05.006
Google Scholar
[24]
M. Jalali, M. Arefeh, Measuring and simulating pH buffer capacity of calcareous soils using empirical and mechanistic models. Archives of Agronomy and Soil Science. 66 (2020) 559–571
DOI: 10.1080/03650340.2019.1628344
Google Scholar
[25]
J. L. Pastor, J. Chai, I. Sánchez. Strength and Microstructure of a Clayey Soil Stabilized with Natural Stone Industry Waste and Lime or Cement. Applied Sciences. 13 (2023) 2583
DOI: 10.3390/app13042583
Google Scholar
[26]
A. A. E. Driss, K. Harichane, and M. Ghrici, Effect of lime on the stabilization of an expansive clay soil in Algeria, J. Geomec. Geoeng. 1 (2022) 1-10.
DOI: 10.38208/jgg.v1i1.413
Google Scholar
[27]
A. Medjnoun, R. Bahar, M. Khiatine, Caractérisation et estimation du gonflement des argiles algériennes, cas des argiles de Médéa. MATEC Web of Conferences. 11 (2016).
DOI: 10.1051/matecconf/20141103004
Google Scholar
[28]
Y. Yongli, M. Aissa, Geotechnical characteristics of Miocene marl in the region of Medea North-South Highway, Algeria. World Academy of Science, Engineering and Technology. International Journal of Geological and Environmental Engineering, 10 (2016).
Google Scholar
[29]
ASTM D 4318, Standard Test Method for Liquid Limit, Plastic Limit, and Plasticity Index of Soils. American Society of Testing Materials, (2018).
DOI: 10.1520/D4318-17E01
Google Scholar
[30]
R. Chihaoui, H. Siad, Y. Senhadji, M. Mouli, A.H. Nefoussi, M. Lachemi. (2022). Efficiency of natural pozzolan and natural perlite in controlling the alkali-silica reaction of cementitious materials. Case Studies in Construction Materials. 17 (2022).
DOI: 10.1016/j.cscm.2022.e01246
Google Scholar
[31]
ASTM D 698-91, Standard Test Method for Laboratory Compaction Characteristics of Soil Using Standard Effort. (2010), American Society of Testing
DOI: 10.1520/D0698-12R21
Google Scholar
[32]
BS EN 13286-47:2012, Unbound and hydraulically bound mixtures - Test method for the determination of California bearing ratio, immediate bearing index, and linear swelling. British Standards Institution, London, (2018).
DOI: 10.3403/30248456
Google Scholar
[33]
ASTM D 2216. Standard Test Methods for Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass. (2019)
DOI: 10.1520/D2216-19
Google Scholar
[34]
NF P94-078. Sols : reconnaissance et essais - Indice CBR après immersion. Indice CBR immédiat. Indice Portant Immédiat - Mesure sur échantillon compacté dans le moule CBR. (1997) information on https://www.boutique.afnor.org/
Google Scholar
[35]
A.Al-Swaidani, I.Hammoud, A.Meziab, Effect of adding natural pozzolana on geotechnical properties of lime-stabilized clayey soil. Journal of Rock Mechanics and Geotechnical Engineering. 8 (2016) 714-725.
DOI: 10.1016/j.jrmge.2016.04.002
Google Scholar
[36]
J. Mitchell, K. Soga, Fundamentals of Soil Behavior, 3rd ed. New York: Wiley, (2005). p.163, 166. ISBN 978-0-471-46302-3
DOI: 10.1016/0148-9062(78)91236-6
Google Scholar
[37]
M. Amiri, R. Salehian, Microstructural Evaluation of the Effect of Initial pH on Geotechnical and Geoenvironmental Characteristics of Marl Soils. Arabian Journal for Science and Engineering, 47 (2022) 12555–12568.
DOI: 10.1007/s13369-021-06554-y
Google Scholar
[38]
R. L. Parfitt, Anion adsorption by soils and soil materials. Advances in Agronomy, (1979), v. 30, p.26.
DOI: 10.1016/S0065-2113(08)60702-6
Google Scholar
[39]
C.U. Nieto, J.M. Azañón, F.A.I Corpas , L. M.M. Salazar, A.R.F Rodríguez , R. M.I.L Mochón, M.J.L. SIERRA. Construcción de un terraplén con suelo estabilizado mediante el uso de agentes alternativos en la Autovía del Olivar. Carreteras Revista técnica de la Asociación Española de la Carretera, 203 (2015) 63-72 information on https://investigacion.ujaen.es/documentos/6000f0405ef74477d580de9d
DOI: 10.3989/ic.1962.v14.i139.4901
Google Scholar
[40]
M. Al-Mukhtar, A. Lasledj, J. F. Alcover, Lime consumption of different clayey soils. Applied Clay Science. 95 (2014) 133-145.
DOI: 10.1016/j.clay.2014.03.024
Google Scholar
[41]
L. N. Plummer, T. M. L. Wigley, D. L. Parkhurst, The kinetics of calcite dissolution in CO₂-water systems at 5º to 60ºC and 0.0 to 1.0 atm CO₂. American Journal of Science. 278 (1978) 179-216
DOI: 10.2475/ajs.278.2.179
Google Scholar
[42]
H.Nommik, K.Vahtras, Retention and fixation of ammonium and ammonia in soils, Nitrogen in Agricultural Soils. Madison: American Society of Agronomy, F. J. Stevenson (Ed). (1982).
DOI: 10.2134/agronmonogr22.c4
Google Scholar
[43]
O. Mekmene, S. Quillard, T. Rouillon, J. M. Bouler, M.Piot, F. Gaucheron, Effects of pH and Ca/P molar ratio on the quantity and crystalline structure of calcium phosphates obtained from aqueous solutions. Dairy Science & Technology. 89 (2009) 301-316
DOI: 10.1051/dst/2009019
Google Scholar
[44]
D. Carroll, Clay Minerals: A Guide to Their X-ray Identification. Geological Society of America, Special Paper 126. (1970).
DOI: 10.1130/spe126-p1
Google Scholar
[45]
D. M.Moore, R. C. Jr Reynolds. X-Ray Diffraction and the Identification and Analysis of Clay Minerals, 2nd ed. Oxford; New York: Oxford University Press, (1997), p.138.
DOI: 10.1346/CCMN.1990.0380416
Google Scholar
[46]
M. Al-Muktar, S. Khattab, J.F. Alcover, Microstructure and geotechnical properties of lime-treated expansive clayey soil. Engineering Geology. 139-140 (2012) 17-27.
DOI: 10.1016/j.enggeo.2012.04.004
Google Scholar
[47]
S. Benyahia, A. Boumezbeur, B. Lamouri, N. Fagel, Swelling properties and lime stabilization of N'Gaous expansive marls, NE Algeria. Journal of African Earth Sciences. 170 (2020) 103895.
DOI: 10.1016/j.jafrearsci.2020.103895
Google Scholar
[48]
G. J.McCarthy, D. J.Hassett, J. A Bender, Synthesis, crystal chemistry and stability of ettringite, a material with potential applications in hazardous waste immobilization. MRS Online Proceedings Library. 245 (1991) 129-140
DOI: 10.1557/PROC-245-129
Google Scholar
[49]
W. Xuebing, P. Zhihua, S. Xiaodong, L.Weiqing,Stability and decomposition mechanism of ettringite in presence of ammonium sulfate solution. Construction and Building Materials. 124 (2016) 786-793.
DOI: 10.1016/j.conbuildmat.2016.07.135
Google Scholar