Exploring the Effectiveness of Lime-Natural Pozzolana Stabilization on a Calcite-Rich Soil in the Presence of Phosphates

Article Preview

Abstract:

Many factors influence the effectiveness of traditional binders used for soil stabilization, including anions present in the soil and carbonates. Natural pozzolana-lime stabilization is a relatively new technique that has shown promising results. However, no study has specifically evaluated its success in the presence of phosphate for high-carbonate soils. This paper investigates this question using marly soil from Medea, which was pre-contaminated with the common fertilizer monoammonium phosphate at 0, 2, 4, and 6% by dry weight, then stabilized with lime and/or natural pozzolana at 0, 8%, and 20%, respectively, by dry weight. To assess the effect of phosphate, mineralogical and macrostructural changes in these mixtures were analyzed through X-ray diffraction tests and scanning electron microscopy, respectively. Additionally, pH levels were monitored over 90 days, and changes in Atterberg limits between 1 and 30 days of curing were compared. Variations in immediate bearing indexes and compaction parameters were also examined. The study found that lime alone was ineffective in stabilizing the soil due to high carbonate content, with improvements in geotechnical properties only observed when natural pozzolana was added with lime. Phosphate was found to impact the lime-natural pozzolana stabilization technique significantly.

You might also be interested in these eBooks

Info:

Pages:

93-112

Citation:

Online since:

November 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P.V. Sivapullaiah, Effects of Soil Pollution on Geotechnical Behavior of Soils, Indian Geotechnical Conference IGC (2009), GUNTUR, India. Information on https://www.academia.edu/3055104/EFFECTS_OF_SOIL_POLLUTION_ON_GEOTECHNICAL_BEHAVIOUR_OF_SOILS

DOI: 10.3233/978-1-61499-656-9-2441

Google Scholar

[2] H. Gadouri, K . Harichan, M. Ghrici, A comparison study between CaSO4·2H2O and Na2SO4 effects on geotechnical properties of clayey soils stabilized with mineral additives to recommend adequate mixtures as materials for road pavements. International Journal of Geotechnical Engineering. 11 (2017) 526-533.

DOI: 10.1080/19386362.2017.1320850

Google Scholar

[3] H. Gadouri, K. Harichan, M. Ghrici, Effects of Na2SO4 on the geotechnical properties of clayey soils stabilize with mineral additives, International Journal of Geotechnical Engineering. 11 (2017) 500-512.

DOI: 10.1080/19386362.2016.1238562

Google Scholar

[4] H. Gadouri, Behavior of Natural Pozzolana-Lime-stabilized Clayey Soils Artificially Contaminated by Sulfates, Jordan Journal of Civil Engineering. 17 (2023).

DOI: 10.14525/jjce.v17i4.07

Google Scholar

[5] H. Gadouri, K. Harichan, M. Ghrici, Assessment of sulphates effect on pH and pozzolanic reactions of soil–lime–natural pozzolana mixtures, International Journal of Pavement Engineering, (2017) 761-774

DOI: 10.1080/10298436.2017.1337119

Google Scholar

[6] N. Cabane, Sols traités à la chaux et aux liants hydrauliques: Contribution à l'identification et à l'analyse des éléments perturbateurs de la stabilisation. Matériaux. Université Jean Monnet - Saint-Étienne, (2004). Information on : theses.hal.science/tel-00010521/document

Google Scholar

[7] O. Cuisinier, T. Le Borgne, F. Masrouri, Quantification of the Effects of Nitrates, Phosphates and Chlorides on Soil Stabilization with Lime and Cement. Engineering Geology. 117 (2010) 229–235.

DOI: 10.1016/j.enggeo.2010.11.002

Google Scholar

[8] L. Saussaye, H. Rica, C. Boutouil, M.Baraud, F. L. Leleyter, Influence of salt-forming anions on the geotechnical properties of a stabilized soil with hydraulic binders: effect of cation type. International Journal of Geotechnical Engineering, Road Materials and Pavement Design. 21 (2020) 1439-1453

DOI: 10.1080/14680629.2018.1553729

Google Scholar

[9] M. G. A .Eltarabily, A.M. Negm, V. O. C. Saavedra, K. E. Gafar, Effects of di-ammonium phosphate on hydraulic, compaction, and shear strength characteristics of sand and clay soils. Arab Journal of Geosciences. 8 (2015) 10419–10432

DOI: 10.1007/s12517-015-1959-4

Google Scholar

[10] S.Cyrus, T. G. S. Kumar, B. M.Abraham, A.Sridharan, B. T Jose. Effect of industrial wastes on the physical and engineering properties of soils. Indian Geotechnical Conference, 2010, Geo Trendz. Proceedings. Ludhiana: IGS, (2010). Information on: https://typeset.io/papers/effect-of-industrial-wastes-on-the-physical-and-engineering-2i6m6xfou7.

Google Scholar

[11] P. Benard, Etude de l'action des phosphates présents dans l'eau de gâchage sur l'hydratation d'un ciment Portland. (2005), Ph.D. thesis, University of Bourgogne. Information on theses.hal.science/hal-00015367/document

Google Scholar

[12] A. M. Alshammari, A. O. S. Baghabra, S. A. Aiban, T. A. Saleh, Phosphoric acid contaminated calcareous soils: Volume change and morphological properties. Powder Technology. v 352 (2019) 340-349.

DOI: 10.1016/j.powtec.2019.04.039

Google Scholar

[13] R. V. P. Chavali, P. R. P. Reddy, V. R. Murthy, P.V. Sivapullaiah. Swelling characteristics of soils subjected to acid contamination, Soils and Foundations. v. 58, n. 1 (2018) 110-121.

DOI: 10.1016/j.sandf.2017.11.005

Google Scholar

[14] A. Kassim, H. Nur, Characterization of phosphoric acid- and lime-stabilized tropical lateritic clay. Environmental Earth Sciences. v 63 (2011) 1057–1066

DOI: 10.1007/s12665-010-0781-2

Google Scholar

[15] A. Marquees, S. Syahril, The Effect of Adding Lime and Phosphoric Acid for Soft Soil Improvement on Unconfined Compressive Strength Value, Proceedings of the 2nd International Seminar of Science and Applied Technology (ISSAT). (2021)

DOI: 10.2991/aer.k.211106.035

Google Scholar

[16] K. Harichane, M. Ghrici, W. Khebizi, H. Missoum. Effect of the combination of lime and natural pozzolana on the durability of clayey soils, Environ Earth Sci. v66 (2012) 2197–2205

DOI: 10.1007/s12665-011-1441-x

Google Scholar

[17] A.A.E. Driss, K. Harichane, M. Ghrici, A.M. Salih. Enhancing Geotechnical Properties of Expansive Clay with Lime and Natural Pozzolana: Experimental and Microstructural Analysis. Arab J Sci Eng. v 50 (2025) 1-25

DOI: 10.1007/s13369-025-09990-2

Google Scholar

[18] F.B. Ziane , A. Youcfi, A.A.E . Driss, M. Ghrici , Improved of Mechanical Characteristics of Gargar Mud by Mineral Additives. Civil and Environmental Engineering Reports. v 33 (2023) 73-94

DOI: 10.59440/ceer/181197

Google Scholar

[19] A.A.E. Driss, , K. Harichane, M Ghrici, S. Sert, E. Bol. Effect of Natural Pozzolana on the Unconsolidated Undrained Shear Strength of a Lime-Stabilized Clay Soil. Int J Civ Eng. v 21 (2023) 1007–1026

DOI: 10.1007/s40999-023-00817-5

Google Scholar

[20] E. Kerstin, F. Nieto, J.M. Azañón. Effects of lime treatments on marls. Applied Clay Science, v. 135 (2017) 611-619

DOI: 10.1016/j.clay.2016.10.047

Google Scholar

[21] A. Seco, F. Ramírez, L. Miqueleiz, B. García, E. Prieto. The use of non-conventional additives in marls stabilization. Applied Clay Science. 51 (2011) 419-423.

DOI: 10.1016/j.clay.2010.12.032

Google Scholar

[22] V. R. Ouhadi, R. N. Yong. The role of clay fractions of marly soils on their post-stabilization failure. Engineering Geology. 70 (2003) 365-375.

DOI: 10.1016/S0013-7952(03)00104-2

Google Scholar

[23] L. Miqueleiz, F. Ramirez, J.E. Oti, A. Seco, J.M. Kinuthia, I. Oreja, P. Urmeneta aP. Alumina filler waste as clay replacement material for unfired brick production. Engineering Geology. 163 (2013) 68-74.

DOI: 10.1016/j.enggeo.2013.05.006

Google Scholar

[24] M. Jalali, M. Arefeh, Measuring and simulating pH buffer capacity of calcareous soils using empirical and mechanistic models. Archives of Agronomy and Soil Science. 66 (2020) 559–571

DOI: 10.1080/03650340.2019.1628344

Google Scholar

[25] J. L. Pastor, J. Chai, I. Sánchez. Strength and Microstructure of a Clayey Soil Stabilized with Natural Stone Industry Waste and Lime or Cement. Applied Sciences. 13 (2023) 2583

DOI: 10.3390/app13042583

Google Scholar

[26] A. A. E. Driss, K. Harichane, and M. Ghrici, Effect of lime on the stabilization of an expansive clay soil in Algeria, J. Geomec. Geoeng. 1 (2022) 1-10.

DOI: 10.38208/jgg.v1i1.413

Google Scholar

[27] A. Medjnoun, R. Bahar, M. Khiatine, Caractérisation et estimation du gonflement des argiles algériennes, cas des argiles de Médéa. MATEC Web of Conferences. 11 (2016).

DOI: 10.1051/matecconf/20141103004

Google Scholar

[28] Y. Yongli, M. Aissa, Geotechnical characteristics of Miocene marl in the region of Medea North-South Highway, Algeria. World Academy of Science, Engineering and Technology. International Journal of Geological and Environmental Engineering, 10 (2016).

Google Scholar

[29] ASTM D 4318, Standard Test Method for Liquid Limit, Plastic Limit, and Plasticity Index of Soils. American Society of Testing Materials, (2018).

DOI: 10.1520/D4318-17E01

Google Scholar

[30] R. Chihaoui, H. Siad, Y. Senhadji, M. Mouli, A.H. Nefoussi, M. Lachemi. (2022). Efficiency of natural pozzolan and natural perlite in controlling the alkali-silica reaction of cementitious materials. Case Studies in Construction Materials. 17 (2022).

DOI: 10.1016/j.cscm.2022.e01246

Google Scholar

[31] ASTM D 698-91, Standard Test Method for Laboratory Compaction Characteristics of Soil Using Standard Effort. (2010), American Society of Testing

DOI: 10.1520/D0698-12R21

Google Scholar

[32] BS EN 13286-47:2012, Unbound and hydraulically bound mixtures - Test method for the determination of California bearing ratio, immediate bearing index, and linear swelling. British Standards Institution, London, (2018).

DOI: 10.3403/30248456

Google Scholar

[33] ASTM D 2216. Standard Test Methods for Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass. (2019)

DOI: 10.1520/D2216-19

Google Scholar

[34] NF P94-078. Sols : reconnaissance et essais - Indice CBR après immersion. Indice CBR immédiat. Indice Portant Immédiat - Mesure sur échantillon compacté dans le moule CBR. (1997) information on https://www.boutique.afnor.org/

Google Scholar

[35] A.Al-Swaidani, I.Hammoud, A.Meziab, Effect of adding natural pozzolana on geotechnical properties of lime-stabilized clayey soil. Journal of Rock Mechanics and Geotechnical Engineering. 8 (2016) 714-725.

DOI: 10.1016/j.jrmge.2016.04.002

Google Scholar

[36] J. Mitchell, K. Soga, Fundamentals of Soil Behavior, 3rd ed. New York: Wiley, (2005). p.163, 166. ISBN 978-0-471-46302-3

DOI: 10.1016/0148-9062(78)91236-6

Google Scholar

[37] M. Amiri, R. Salehian, Microstructural Evaluation of the Effect of Initial pH on Geotechnical and Geoenvironmental Characteristics of Marl Soils. Arabian Journal for Science and Engineering, 47 (2022) 12555–12568.

DOI: 10.1007/s13369-021-06554-y

Google Scholar

[38] R. L. Parfitt, Anion adsorption by soils and soil materials. Advances in Agronomy, (1979), v. 30, p.26.

DOI: 10.1016/S0065-2113(08)60702-6

Google Scholar

[39] C.U. Nieto, J.M. Azañón, F.A.I Corpas , L. M.M. Salazar, A.R.F Rodríguez , R. M.I.L Mochón, M.J.L. SIERRA. Construcción de un terraplén con suelo estabilizado mediante el uso de agentes alternativos en la Autovía del Olivar. Carreteras Revista técnica de la Asociación Española de la Carretera, 203 (2015) 63-72 information on https://investigacion.ujaen.es/documentos/6000f0405ef74477d580de9d

DOI: 10.3989/ic.1962.v14.i139.4901

Google Scholar

[40] M. Al-Mukhtar, A. Lasledj, J. F. Alcover, Lime consumption of different clayey soils. Applied Clay Science. 95 (2014) 133-145.

DOI: 10.1016/j.clay.2014.03.024

Google Scholar

[41] L. N. Plummer, T. M. L. Wigley, D. L. Parkhurst, The kinetics of calcite dissolution in CO₂-water systems at 5º to 60ºC and 0.0 to 1.0 atm CO₂. American Journal of Science. 278 (1978) 179-216

DOI: 10.2475/ajs.278.2.179

Google Scholar

[42] H.Nommik, K.Vahtras, Retention and fixation of ammonium and ammonia in soils, Nitrogen in Agricultural Soils. Madison: American Society of Agronomy, F. J. Stevenson (Ed). (1982).

DOI: 10.2134/agronmonogr22.c4

Google Scholar

[43] O. Mekmene, S. Quillard, T. Rouillon, J. M. Bouler, M.Piot, F. Gaucheron, Effects of pH and Ca/P molar ratio on the quantity and crystalline structure of calcium phosphates obtained from aqueous solutions. Dairy Science & Technology. 89 (2009) 301-316

DOI: 10.1051/dst/2009019

Google Scholar

[44] D. Carroll, Clay Minerals: A Guide to Their X-ray Identification. Geological Society of America, Special Paper 126. (1970).

DOI: 10.1130/spe126-p1

Google Scholar

[45] D. M.Moore, R. C. Jr Reynolds. X-Ray Diffraction and the Identification and Analysis of Clay Minerals, 2nd ed. Oxford; New York: Oxford University Press, (1997), p.138.

DOI: 10.1346/CCMN.1990.0380416

Google Scholar

[46] M. Al-Muktar, S. Khattab, J.F. Alcover, Microstructure and geotechnical properties of lime-treated expansive clayey soil. Engineering Geology. 139-140 (2012) 17-27.

DOI: 10.1016/j.enggeo.2012.04.004

Google Scholar

[47] S. Benyahia, A. Boumezbeur, B. Lamouri, N. Fagel, Swelling properties and lime stabilization of N'Gaous expansive marls, NE Algeria. Journal of African Earth Sciences. 170 (2020) 103895.

DOI: 10.1016/j.jafrearsci.2020.103895

Google Scholar

[48] G. J.McCarthy, D. J.Hassett, J. A Bender, Synthesis, crystal chemistry and stability of ettringite, a material with potential applications in hazardous waste immobilization. MRS Online Proceedings Library. 245 (1991) 129-140

DOI: 10.1557/PROC-245-129

Google Scholar

[49] W. Xuebing, P. Zhihua, S. Xiaodong, L.Weiqing,Stability and decomposition mechanism of ettringite in presence of ammonium sulfate solution. Construction and Building Materials. 124 (2016) 786-793.

DOI: 10.1016/j.conbuildmat.2016.07.135

Google Scholar